diff --git a/algebra/agree.v b/algebra/agree.v
index 8e73f6bb842cfa2409b623c86366371994dac45e..1d28662f412bc4e3d71e627cd6be0544fbbd0821 100644
--- a/algebra/agree.v
+++ b/algebra/agree.v
@@ -1,121 +1,317 @@
 From iris.algebra Require Export cmra.
+From iris.algebra Require Import list.
 From iris.base_logic Require Import base_logic.
-Local Hint Extern 10 (_ ≤ _) => omega.
+Local Arguments validN _ _ _ !_ /.
+Local Arguments valid _ _  !_ /.
+Local Arguments op _ _ _ !_ /.
+Local Arguments pcore _ _ !_ /.
 
 Record agree (A : Type) : Type := Agree {
-  agree_car : nat → A;
-  agree_is_valid : nat → Prop;
-  agree_valid_S n : agree_is_valid (S n) → agree_is_valid n
+  agree_car : A;
+  agree_with : list A;
 }.
-Arguments Agree {_} _ _ _.
-Arguments agree_car {_} _ _.
-Arguments agree_is_valid {_} _ _.
+Arguments Agree {_} _ _.
+Arguments agree_car {_} _.
+Arguments agree_with {_} _.
+
+(* Some theory about set-inclusion on lists and lists of which all elements are equal.
+   TODO: Move this elsewhere. *)
+Definition list_setincl `(R : relation A) (al bl : list A) :=
+  ∀ a, a ∈ al → ∃ b, b ∈ bl ∧ R a b.
+Definition list_setequiv `(R : relation A) (al bl : list A) :=
+  list_setincl R al bl ∧ list_setincl R bl al.
+(* list_agrees is carefully written such that, when applied to a singleton, it is convertible to True. This makes working with agreement much more pleasant. *)
+Definition list_agrees `(R : relation A) (al : list A) :=
+  match al with
+  | [] => True
+  | [a] => True
+  | a :: al => ∀ b, b ∈ al → R a b
+  end.
+
+Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
+  list_agrees R al ↔ (∀ a b, a ∈ al → b ∈ al → R a b).
+Proof.
+  destruct al as [|a [|b al]].
+  - split; last done. intros _ ? ? []%elem_of_nil.
+  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
+  - simpl. split.
+    + intros Hl a' b' [->|Ha']%elem_of_cons.
+      * intros [->|Hb']%elem_of_cons; first done. auto.
+      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
+        trans a; last by auto. symmetry. auto.
+    + intros Hl b' Hb'. apply Hl; set_solver.
+Qed.
+
+Section list_theory.
+  Context `(R: relation A) `{Equivalence A R}.
+
+  Global Instance: PreOrder (list_setincl R).
+  Proof.
+    split.
+    - intros al a Ha. set_solver.
+    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
+      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
+      by trans b.
+  Qed.
+
+  Global Instance: Equivalence (list_setequiv R).
+  Proof.
+    split.
+    - by split.
+    - intros ?? [??]. split; auto.
+    - intros ??? [??] [??]. split; etrans; done.
+  Qed.
+
+  Global Instance list_setincl_subrel `(R' : relation A) :
+    subrelation R R' → subrelation (list_setincl R) (list_setincl R').
+  Proof.
+    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
+    exists b. split; first done. exact: HRR'.
+  Qed.
+
+  Global Instance list_setequiv_subrel `(R' : relation A) :
+    subrelation R R' → subrelation (list_setequiv R) (list_setequiv R').
+  Proof. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed. 
+
+  Global Instance list_setincl_perm : subrelation (≡ₚ) (list_setincl R).
+  Proof.
+    intros al bl Hab a Ha. exists a. split; last done.
+    by rewrite -Hab.
+  Qed.
+
+  Global Instance list_setincl_app l :
+    Proper (list_setincl R ==> list_setincl R) (app l).
+  Proof.
+    intros al bl Hab a [Ha|Ha]%elem_of_app.
+    - exists a. split; last done. apply elem_of_app. by left.
+    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
+      apply elem_of_app. by right.
+  Qed.
+
+  Global Instance list_setequiv_app l :
+    Proper (list_setequiv R ==> list_setequiv R) (app l).
+  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.
+
+  Global Instance: subrelation (≡ₚ) (flip (list_setincl R)).
+  Proof. intros ???. apply list_setincl_perm. done. Qed.
+
+  Global Instance list_agrees_setincl :
+    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
+  Proof.
+    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
+    destruct (Hab _ Ha) as (a' & Ha' & HRa).
+    destruct (Hab _ Hb) as (b' & Hb' & HRb).
+    trans a'; first done. etrans; last done.
+    eapply Hal; done.
+  Qed.
+
+  Global Instance list_agrees_setequiv :
+    Proper (list_setequiv R ==> iff) (list_agrees R).
+  Proof.
+    intros ?? [??]. split; by apply: list_agrees_setincl.
+  Qed.
+
+  Lemma list_setincl_contains al bl :
+    (∀ x, x ∈ al → x ∈ bl) → list_setincl R al bl.
+  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.
+
+  Lemma list_setequiv_equiv al bl :
+    (∀ x, x ∈ al ↔ x ∈ bl) → list_setequiv R al bl.
+  Proof.
+    intros Hin. split; apply list_setincl_contains; naive_solver.
+  Qed.
+
+  Lemma list_agrees_contains al bl :
+    (∀ x, x ∈ bl → x ∈ al) →
+    list_agrees R al → list_agrees R bl.
+  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.
+
+  Lemma list_agrees_equiv al bl :
+    (∀ x, x ∈ bl ↔ x ∈ al) →
+    list_agrees R al ↔ list_agrees R bl.
+  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.
+
+  Lemma list_setincl_singleton a b :
+    R a b → list_setincl R [a] [b].
+  Proof.
+    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
+    apply elem_of_list_singleton. done.
+  Qed.
+
+  Lemma list_setincl_singleton_rev a b :
+    list_setincl R [a] [b] → R a b.
+  Proof.
+    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
+    by apply elem_of_list_singleton.
+  Qed.
+
+  Lemma list_setequiv_singleton a b :
+    R a b → list_setequiv R [a] [b].
+  Proof. intros ?. split; by apply list_setincl_singleton. Qed.
+
+  Lemma list_agrees_iff_setincl al a :
+    a ∈ al → list_agrees R al ↔ list_setincl R al [a].
+  Proof.
+    intros Hin. split.
+    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
+    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
+      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
+      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
+      by trans a.
+  Qed.
+
+  Lemma list_setincl_singleton_in al a :
+    a ∈ al → list_setincl R [a] al.
+  Proof.
+    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
+  Qed.
+
+  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
+  Proof.
+    move=>al bl. induction 1.
+    - intros ? []%elem_of_nil.
+    - intros a [->|Ha]%elem_of_cons.
+      + eexists. split; first constructor. done.
+      + destruct (IHForall2 _ Ha) as (b & ? & ?).
+        exists b. split; first by constructor. done.
+  Qed.
+
+  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
+  Proof.
+    move=>al bl ?. split; apply list_setincl_ext; done.
+  Qed.
+
+  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
+    subrelation R R' → ∀ l, list_agrees R l → list_agrees R' l.
+  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.
+
+  Section fmap.
+    Context `(R' : relation B) (f : A → B) {Hf: Proper (R ==> R') f}.
+    
+    Global Instance list_setincl_fmap :
+      Proper (list_setincl R ==> list_setincl R') (fmap f).
+    Proof.
+      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
+      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
+      split; first eapply elem_of_list_fmap; eauto.
+    Qed.
+    
+    Global Instance list_setequiv_fmap :
+      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
+    Proof. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.
+
+    Lemma list_agrees_fmap `{Equivalence _ R'} al :
+      list_agrees R al → list_agrees R' (f <$> al).
+    Proof.
+      move=> /list_agrees_alt Hl. apply <-(list_agrees_alt R')=> a' b'.
+      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
+      apply Hf. exact: Hl.
+    Qed.
+      
+  End fmap.
+
+End list_theory.
 
 Section agree.
 Context {A : ofeT}.
 
-Instance agree_validN : ValidN (agree A) := λ n x,
-  agree_is_valid x n ∧ ∀ n', n' ≤ n → agree_car x n ≡{n'}≡ agree_car x n'.
-Instance agree_valid : Valid (agree A) := λ x, ∀ n, ✓{n} x.
+Definition agree_list (x : agree A) := agree_car x :: agree_with x.
 
-Lemma agree_valid_le n n' (x : agree A) :
-  agree_is_valid x n → n' ≤ n → agree_is_valid x n'.
-Proof. induction 2; eauto using agree_valid_S. Qed.
+Instance agree_validN : ValidN (agree A) := λ n x,
+  list_agrees (dist n) (agree_list x).
+Instance agree_valid : Valid (agree A) := λ x,
+  list_agrees (equiv) (agree_list x).
 
-Instance agree_equiv : Equiv (agree A) := λ x y,
-  (∀ n, agree_is_valid x n ↔ agree_is_valid y n) ∧
-  (∀ n, agree_is_valid x n → agree_car x n ≡{n}≡ agree_car y n).
 Instance agree_dist : Dist (agree A) := λ n x y,
-  (∀ n', n' ≤ n → agree_is_valid x n' ↔ agree_is_valid y n') ∧
-  (∀ n', n' ≤ n → agree_is_valid x n' → agree_car x n' ≡{n'}≡ agree_car y n').
+  list_setequiv (dist n) (agree_list x) (agree_list y).
+Instance agree_equiv : Equiv (agree A) := λ x y,
+  ∀ n, list_setequiv (dist n) (agree_list x) (agree_list y).
+
+Definition agree_dist_incl n (x y : agree A) :=
+  list_setincl (dist n) (agree_list x) (agree_list y).
+
 Definition agree_ofe_mixin : OfeMixin (agree A).
 Proof.
   split.
-  - intros x y; split.
-    + by intros Hxy n; split; intros; apply Hxy.
-    + by intros Hxy; split; intros; apply Hxy with n.
-  - split.
-    + by split.
-    + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy.
-    + intros x y z Hxy Hyz; split; intros n'; intros.
-      * trans (agree_is_valid y n'). by apply Hxy. by apply Hyz.
-      * trans (agree_car y n'). by apply Hxy. by apply Hyz, Hxy.
-  - intros n x y Hxy; split; intros; apply Hxy; auto.
+  - intros x y; split; intros Hxy; done.
+  - split; rewrite /dist /agree_dist; intros ? *.
+    + reflexivity.
+    + by symmetry.
+    + intros. etrans; eassumption.
+  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
 Qed.
 Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.
 
-Program Definition agree_compl : Compl agreeC := λ c,
-  {| agree_car n := agree_car (c n) n;
-     agree_is_valid n := agree_is_valid (c n) n |}.
-Next Obligation.
-  intros c n ?. apply (chain_cauchy c n (S n)), agree_valid_S; auto.
-Qed.
-Global Program Instance agree_cofe : Cofe agreeC :=
-  {| compl := agree_compl |}.
-Next Obligation.
-  intros n c; apply and_wlog_r; intros;
-    symmetry; apply (chain_cauchy c); naive_solver.
-Qed.
-
 Program Instance agree_op : Op (agree A) := λ x y,
   {| agree_car := agree_car x;
-     agree_is_valid n := agree_is_valid x n ∧ agree_is_valid y n ∧ x ≡{n}≡ y |}.
-Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed.
+     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
 Instance agree_pcore : PCore (agree A) := Some.
 
 Instance: Comm (≡) (@op (agree A) _).
-Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed.
+Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.
+
 Lemma agree_idemp (x : agree A) : x ⋅ x ≡ x.
-Proof. split; naive_solver. Qed.
+Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.
+
 Instance: ∀ n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
 Proof.
-  intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?].
-  rewrite -(proj2 Hxy n') -1?(Hx n'); eauto using agree_valid_le.
-  symmetry. by apply dist_le with n; try apply Hxy.
+  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
+  by intros ->.
 Qed.
+Instance: ∀ n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
+Proof.
+  intros n ???. assert (x ≡{n}≡ y) as Hxy by by apply equiv_dist.
+  split; rewrite Hxy; done.
+Qed.
+
 Instance: ∀ x : agree A, Proper (dist n ==> dist n) (op x).
 Proof.
-  intros n x y1 y2 [Hy' Hy]; split; [|done].
-  split; intros (?&?&Hxy); repeat (intro || split);
-    try apply Hy'; eauto using agree_valid_le.
-  - etrans; [apply Hxy|apply Hy]; eauto using agree_valid_le.
-  - etrans; [apply Hxy|symmetry; apply Hy, Hy'];
-      eauto using agree_valid_le.
+  intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. 
+  rewrite !app_comm_cons. apply: list_setequiv_app.
 Qed.
 Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
 Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
 Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _.
 Instance: Assoc (≡) (@op (agree A) _).
-Proof.
-  intros x y z; split; simpl; intuition;
-    repeat match goal with H : agree_is_valid _ _ |- _ => clear H end;
-    by cofe_subst; rewrite !agree_idemp.
-Qed.
+Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
 
 Lemma agree_included (x y : agree A) : x ≼ y ↔ y ≡ x ⋅ y.
 Proof.
   split; [|by intros ?; exists y].
   by intros [z Hz]; rewrite Hz assoc agree_idemp.
 Qed.
-Lemma agree_op_inv n (x1 x2 : agree A) : ✓{n} (x1 ⋅ x2) → x1 ≡{n}≡ x2.
-Proof. intros Hxy; apply Hxy. Qed.
+Lemma agree_op_inv_inclN n x1 x2 : ✓{n} (x1 ⋅ x2) → agree_dist_incl n x1 x2.
+Proof.
+  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
+  split; first by constructor. eapply Hv.
+  - simpl. destruct Ha as [->|Ha]; set_solver.
+  - simpl. set_solver+.
+Qed.
+Lemma agree_op_invN n (x1 x2 : agree A) : ✓{n} (x1 ⋅ x2) → x1 ≡{n}≡ x2.
+Proof.
+  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
+Qed.
+
 Lemma agree_valid_includedN n (x y : agree A) : ✓{n} y → x ≼{n} y → x ≡{n}≡ y.
 Proof.
   move=> Hval [z Hy]; move: Hval; rewrite Hy.
-  by move=> /agree_op_inv->; rewrite agree_idemp.
+  by move=> /agree_op_invN->; rewrite agree_idemp.
 Qed.
 
 Definition agree_cmra_mixin : CMRAMixin (agree A).
 Proof.
   apply cmra_total_mixin; try apply _ || by eauto.
-  - intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?].
-    rewrite -(Hx n'); last auto.
-    symmetry; apply dist_le with n; try apply Hx; auto.
+  - move=>x. split.
+    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
+      apply equiv_dist, Hx; done.
+    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
+      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
+  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
   - intros x. apply agree_idemp.
-  - by intros n x y [(?&?&?) ?].
+  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
   - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
     + by rewrite agree_idemp.
-    + by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idemp.
+    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
 Qed.
 Canonical Structure agreeR : cmraT :=
   CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
@@ -125,60 +321,114 @@ Proof. rewrite /CMRATotal; eauto. Qed.
 Global Instance agree_persistent (x : agree A) : Persistent x.
 Proof. by constructor. Qed.
 
-Program Definition to_agree (x : A) : agree A :=
-  {| agree_car n := x; agree_is_valid n := True |}.
-Solve Obligations with done.
+Lemma agree_op_inv (x1 x2 : agree A) : ✓ (x1 ⋅ x2) → x1 ≡ x2.
+Proof.
+  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
+Qed.
+
+Global Instance agree_discrete :
+  Discrete A → CMRADiscrete agreeR.
+Proof.
+  intros HD. split.
+  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
+    intros x y ?. apply equiv_dist, HD. done.
+  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
+    move=> x. apply (list_agrees_subrel _ _). clear -HD.
+    intros x y. apply HD.
+Qed.
+
+Definition to_agree (x : A) : agree A :=
+  {| agree_car := x; agree_with := [] |}.
 
 Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
-Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
+Proof.
+  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
+  exact: list_setequiv_singleton.
+Qed.
 Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper _.
 
-Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree).
-Proof. by intros x y [_ Hxy]; apply Hxy. Qed.
+Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
+Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
+Global Instance to_agree_inj : Inj (≡) (≡) (to_agree).
+Proof.
+  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
+Qed.
 
 Lemma to_agree_uninj n (x : agree A) : ✓{n} x → ∃ y : A, to_agree y ≡{n}≡ x.
 Proof.
-  intros [??]. exists (agree_car x n).
-  split; naive_solver eauto using agree_valid_le.
+  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
+  split.
+  - apply: list_setincl_singleton_in. set_solver+.
+  - apply (list_agrees_iff_setincl _); first set_solver+. done.
+Qed.
+
+Lemma to_agree_included (a b : A) : to_agree a ≼ to_agree b ↔ a ≡ b.
+Proof.
+  split.
+  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
+    (* TODO: This could become a generic lemma about list_setincl. *)
+    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
+    done.
+  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
+Qed.
+
+Lemma to_agree_comp_valid (a b : A) : ✓ (to_agree a ⋅ to_agree b) ↔ a ≡ b.
+Proof.
+  split.
+  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
+    intros Hv. apply Hv; simpl; set_solver.
+  - intros ->. rewrite agree_idemp. done.
 Qed.
 
 (** Internalized properties *)
 Lemma agree_equivI {M} a b : to_agree a ≡ to_agree b ⊣⊢ (a ≡ b : uPred M).
 Proof.
-  uPred.unseal. do 2 split. by intros [? Hv]; apply (Hv n). apply: to_agree_ne.
+  uPred.unseal. do 2 split.
+  - intros Hx. exact: to_agree_injN.
+  - intros Hx. exact: to_agree_ne.
 Qed.
 Lemma agree_validI {M} x y : ✓ (x ⋅ y) ⊢ (x ≡ y : uPred M).
-Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_inv. Qed.
+Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
 End agree.
 
 Arguments agreeC : clear implicits.
 Arguments agreeR : clear implicits.
 
 Program Definition agree_map {A B} (f : A → B) (x : agree A) : agree B :=
-  {| agree_car n := f (agree_car x n); agree_is_valid := agree_is_valid x;
-     agree_valid_S := agree_valid_S _ x |}.
+  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
 Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
-Proof. by destruct x. Qed.
+Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
 Lemma agree_map_compose {A B C} (f : A → B) (g : B → C) (x : agree A) :
   agree_map (g ∘ f) x = agree_map g (agree_map f x).
-Proof. done. Qed.
+Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
 
 Section agree_map.
   Context {A B : ofeT} (f : A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}.
   Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
-  Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed.
+  Proof.
+    intros x y Hxy.
+    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
+    eapply list_setequiv_fmap; last exact Hxy. apply _. 
+  Qed.
   Instance agree_map_proper : Proper ((≡) ==> (≡)) (agree_map f) := ne_proper _.
+
   Lemma agree_map_ext (g : A → B) x :
     (∀ x, f x ≡ g x) → agree_map f x ≡ agree_map g x.
-  Proof. by intros Hfg; split; simpl; intros; rewrite ?Hfg. Qed.
+  Proof.
+    intros Hfg n. apply: list_setequiv_ext.
+    change (f <$> (agree_list x) ≡{n}≡ g <$> (agree_list x)).
+    apply list_fmap_ext_ne=>y. by apply equiv_dist.
+  Qed.
+
   Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
   Proof.
     split; first apply _.
-    - by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx].
+    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
+      change (list_agrees (dist n) (f <$> agree_list x)).
+      eapply (list_agrees_fmap _ _ _); done.
     - intros x y; rewrite !agree_included=> ->.
-      split; last done; split; simpl; last tauto.
-      by intros (?&?&Hxy); repeat split; intros;
-        try apply Hxy; try apply Hf; eauto using @agree_valid_le.
+      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
+      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
   Qed.
 End agree_map.
 
@@ -186,8 +436,9 @@ Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
   CofeMor (agree_map f : agreeC A → agreeC B).
 Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B).
 Proof.
-  intros f g Hfg x; split; simpl; intros; first done.
-  by apply dist_le with n; try apply Hfg.
+  intros f g Hfg x. apply: list_setequiv_ext.
+  change (f <$> (agree_list x) ≡{n}≡ g <$> (agree_list x)).
+  apply list_fmap_ext_ne. done.
 Qed.
 
 Program Definition agreeRF (F : cFunctor) : rFunctor := {|