diff --git a/algebra/agree.v b/algebra/agree.v index 8e73f6bb842cfa2409b623c86366371994dac45e..1d28662f412bc4e3d71e627cd6be0544fbbd0821 100644 --- a/algebra/agree.v +++ b/algebra/agree.v @@ -1,121 +1,317 @@ From iris.algebra Require Export cmra. +From iris.algebra Require Import list. From iris.base_logic Require Import base_logic. -Local Hint Extern 10 (_ ≤ _) => omega. +Local Arguments validN _ _ _ !_ /. +Local Arguments valid _ _ !_ /. +Local Arguments op _ _ _ !_ /. +Local Arguments pcore _ _ !_ /. Record agree (A : Type) : Type := Agree { - agree_car : nat → A; - agree_is_valid : nat → Prop; - agree_valid_S n : agree_is_valid (S n) → agree_is_valid n + agree_car : A; + agree_with : list A; }. -Arguments Agree {_} _ _ _. -Arguments agree_car {_} _ _. -Arguments agree_is_valid {_} _ _. +Arguments Agree {_} _ _. +Arguments agree_car {_} _. +Arguments agree_with {_} _. + +(* Some theory about set-inclusion on lists and lists of which all elements are equal. + TODO: Move this elsewhere. *) +Definition list_setincl `(R : relation A) (al bl : list A) := + ∀ a, a ∈ al → ∃ b, b ∈ bl ∧ R a b. +Definition list_setequiv `(R : relation A) (al bl : list A) := + list_setincl R al bl ∧ list_setincl R bl al. +(* list_agrees is carefully written such that, when applied to a singleton, it is convertible to True. This makes working with agreement much more pleasant. *) +Definition list_agrees `(R : relation A) (al : list A) := + match al with + | [] => True + | [a] => True + | a :: al => ∀ b, b ∈ al → R a b + end. + +Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al : + list_agrees R al ↔ (∀ a b, a ∈ al → b ∈ al → R a b). +Proof. + destruct al as [|a [|b al]]. + - split; last done. intros _ ? ? []%elem_of_nil. + - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done. + - simpl. split. + + intros Hl a' b' [->|Ha']%elem_of_cons. + * intros [->|Hb']%elem_of_cons; first done. auto. + * intros [->|Hb']%elem_of_cons; first by (symmetry; auto). + trans a; last by auto. symmetry. auto. + + intros Hl b' Hb'. apply Hl; set_solver. +Qed. + +Section list_theory. + Context `(R: relation A) `{Equivalence A R}. + + Global Instance: PreOrder (list_setincl R). + Proof. + split. + - intros al a Ha. set_solver. + - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab). + destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done. + by trans b. + Qed. + + Global Instance: Equivalence (list_setequiv R). + Proof. + split. + - by split. + - intros ?? [??]. split; auto. + - intros ??? [??] [??]. split; etrans; done. + Qed. + + Global Instance list_setincl_subrel `(R' : relation A) : + subrelation R R' → subrelation (list_setincl R) (list_setincl R'). + Proof. + intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR). + exists b. split; first done. exact: HRR'. + Qed. + + Global Instance list_setequiv_subrel `(R' : relation A) : + subrelation R R' → subrelation (list_setequiv R) (list_setequiv R'). + Proof. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed. + + Global Instance list_setincl_perm : subrelation (≡ₚ) (list_setincl R). + Proof. + intros al bl Hab a Ha. exists a. split; last done. + by rewrite -Hab. + Qed. + + Global Instance list_setincl_app l : + Proper (list_setincl R ==> list_setincl R) (app l). + Proof. + intros al bl Hab a [Ha|Ha]%elem_of_app. + - exists a. split; last done. apply elem_of_app. by left. + - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done. + apply elem_of_app. by right. + Qed. + + Global Instance list_setequiv_app l : + Proper (list_setequiv R ==> list_setequiv R) (app l). + Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed. + + Global Instance: subrelation (≡ₚ) (flip (list_setincl R)). + Proof. intros ???. apply list_setincl_perm. done. Qed. + + Global Instance list_agrees_setincl : + Proper (flip (list_setincl R) ==> impl) (list_agrees R). + Proof. + move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb. + destruct (Hab _ Ha) as (a' & Ha' & HRa). + destruct (Hab _ Hb) as (b' & Hb' & HRb). + trans a'; first done. etrans; last done. + eapply Hal; done. + Qed. + + Global Instance list_agrees_setequiv : + Proper (list_setequiv R ==> iff) (list_agrees R). + Proof. + intros ?? [??]. split; by apply: list_agrees_setincl. + Qed. + + Lemma list_setincl_contains al bl : + (∀ x, x ∈ al → x ∈ bl) → list_setincl R al bl. + Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed. + + Lemma list_setequiv_equiv al bl : + (∀ x, x ∈ al ↔ x ∈ bl) → list_setequiv R al bl. + Proof. + intros Hin. split; apply list_setincl_contains; naive_solver. + Qed. + + Lemma list_agrees_contains al bl : + (∀ x, x ∈ bl → x ∈ al) → + list_agrees R al → list_agrees R bl. + Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed. + + Lemma list_agrees_equiv al bl : + (∀ x, x ∈ bl ↔ x ∈ al) → + list_agrees R al ↔ list_agrees R bl. + Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed. + + Lemma list_setincl_singleton a b : + R a b → list_setincl R [a] [b]. + Proof. + intros HR c ->%elem_of_list_singleton. exists b. split; last done. + apply elem_of_list_singleton. done. + Qed. + + Lemma list_setincl_singleton_rev a b : + list_setincl R [a] [b] → R a b. + Proof. + intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done. + by apply elem_of_list_singleton. + Qed. + + Lemma list_setequiv_singleton a b : + R a b → list_setequiv R [a] [b]. + Proof. intros ?. split; by apply list_setincl_singleton. Qed. + + Lemma list_agrees_iff_setincl al a : + a ∈ al → list_agrees R al ↔ list_setincl R al [a]. + Proof. + intros Hin. split. + - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl. + - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc. + destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?). + destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?). + by trans a. + Qed. + + Lemma list_setincl_singleton_in al a : + a ∈ al → list_setincl R [a] al. + Proof. + intros Hin b ->%elem_of_list_singleton. exists a. split; done. + Qed. + + Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R). + Proof. + move=>al bl. induction 1. + - intros ? []%elem_of_nil. + - intros a [->|Ha]%elem_of_cons. + + eexists. split; first constructor. done. + + destruct (IHForall2 _ Ha) as (b & ? & ?). + exists b. split; first by constructor. done. + Qed. + + Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R). + Proof. + move=>al bl ?. split; apply list_setincl_ext; done. + Qed. + + Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} : + subrelation R R' → ∀ l, list_agrees R l → list_agrees R' l. + Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed. + + Section fmap. + Context `(R' : relation B) (f : A → B) {Hf: Proper (R ==> R') f}. + + Global Instance list_setincl_fmap : + Proper (list_setincl R ==> list_setincl R') (fmap f). + Proof. + intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap. + destruct (Hab _ Ha) as (b & Hb & HR). exists (f b). + split; first eapply elem_of_list_fmap; eauto. + Qed. + + Global Instance list_setequiv_fmap : + Proper (list_setequiv R ==> list_setequiv R') (fmap f). + Proof. intros ?? [??]. split; apply list_setincl_fmap; done. Qed. + + Lemma list_agrees_fmap `{Equivalence _ R'} al : + list_agrees R al → list_agrees R' (f <$> al). + Proof. + move=> /list_agrees_alt Hl. apply <-(list_agrees_alt R')=> a' b'. + intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap. + apply Hf. exact: Hl. + Qed. + + End fmap. + +End list_theory. Section agree. Context {A : ofeT}. -Instance agree_validN : ValidN (agree A) := λ n x, - agree_is_valid x n ∧ ∀ n', n' ≤ n → agree_car x n ≡{n'}≡ agree_car x n'. -Instance agree_valid : Valid (agree A) := λ x, ∀ n, ✓{n} x. +Definition agree_list (x : agree A) := agree_car x :: agree_with x. -Lemma agree_valid_le n n' (x : agree A) : - agree_is_valid x n → n' ≤ n → agree_is_valid x n'. -Proof. induction 2; eauto using agree_valid_S. Qed. +Instance agree_validN : ValidN (agree A) := λ n x, + list_agrees (dist n) (agree_list x). +Instance agree_valid : Valid (agree A) := λ x, + list_agrees (equiv) (agree_list x). -Instance agree_equiv : Equiv (agree A) := λ x y, - (∀ n, agree_is_valid x n ↔ agree_is_valid y n) ∧ - (∀ n, agree_is_valid x n → agree_car x n ≡{n}≡ agree_car y n). Instance agree_dist : Dist (agree A) := λ n x y, - (∀ n', n' ≤ n → agree_is_valid x n' ↔ agree_is_valid y n') ∧ - (∀ n', n' ≤ n → agree_is_valid x n' → agree_car x n' ≡{n'}≡ agree_car y n'). + list_setequiv (dist n) (agree_list x) (agree_list y). +Instance agree_equiv : Equiv (agree A) := λ x y, + ∀ n, list_setequiv (dist n) (agree_list x) (agree_list y). + +Definition agree_dist_incl n (x y : agree A) := + list_setincl (dist n) (agree_list x) (agree_list y). + Definition agree_ofe_mixin : OfeMixin (agree A). Proof. split. - - intros x y; split. - + by intros Hxy n; split; intros; apply Hxy. - + by intros Hxy; split; intros; apply Hxy with n. - - split. - + by split. - + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy. - + intros x y z Hxy Hyz; split; intros n'; intros. - * trans (agree_is_valid y n'). by apply Hxy. by apply Hyz. - * trans (agree_car y n'). by apply Hxy. by apply Hyz, Hxy. - - intros n x y Hxy; split; intros; apply Hxy; auto. + - intros x y; split; intros Hxy; done. + - split; rewrite /dist /agree_dist; intros ? *. + + reflexivity. + + by symmetry. + + intros. etrans; eassumption. + - intros ???. apply list_setequiv_subrel=>??. apply dist_S. Qed. Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin. -Program Definition agree_compl : Compl agreeC := λ c, - {| agree_car n := agree_car (c n) n; - agree_is_valid n := agree_is_valid (c n) n |}. -Next Obligation. - intros c n ?. apply (chain_cauchy c n (S n)), agree_valid_S; auto. -Qed. -Global Program Instance agree_cofe : Cofe agreeC := - {| compl := agree_compl |}. -Next Obligation. - intros n c; apply and_wlog_r; intros; - symmetry; apply (chain_cauchy c); naive_solver. -Qed. - Program Instance agree_op : Op (agree A) := λ x y, {| agree_car := agree_car x; - agree_is_valid n := agree_is_valid x n ∧ agree_is_valid y n ∧ x ≡{n}≡ y |}. -Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed. + agree_with := agree_with x ++ agree_car y :: agree_with y |}. Instance agree_pcore : PCore (agree A) := Some. Instance: Comm (≡) (@op (agree A) _). -Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed. +Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed. + Lemma agree_idemp (x : agree A) : x ⋅ x ≡ x. -Proof. split; naive_solver. Qed. +Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed. + Instance: ∀ n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n). Proof. - intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?]. - rewrite -(proj2 Hxy n') -1?(Hx n'); eauto using agree_valid_le. - symmetry. by apply dist_le with n; try apply Hxy. + intros n x y. rewrite /dist /validN /agree_dist /agree_validN. + by intros ->. Qed. +Instance: ∀ n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n). +Proof. + intros n ???. assert (x ≡{n}≡ y) as Hxy by by apply equiv_dist. + split; rewrite Hxy; done. +Qed. + Instance: ∀ x : agree A, Proper (dist n ==> dist n) (op x). Proof. - intros n x y1 y2 [Hy' Hy]; split; [|done]. - split; intros (?&?&Hxy); repeat (intro || split); - try apply Hy'; eauto using agree_valid_le. - - etrans; [apply Hxy|apply Hy]; eauto using agree_valid_le. - - etrans; [apply Hxy|symmetry; apply Hy, Hy']; - eauto using agree_valid_le. + intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. + rewrite !app_comm_cons. apply: list_setequiv_app. Qed. Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _). Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed. Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _. Instance: Assoc (≡) (@op (agree A) _). -Proof. - intros x y z; split; simpl; intuition; - repeat match goal with H : agree_is_valid _ _ |- _ => clear H end; - by cofe_subst; rewrite !agree_idemp. -Qed. +Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed. Lemma agree_included (x y : agree A) : x ≼ y ↔ y ≡ x ⋅ y. Proof. split; [|by intros ?; exists y]. by intros [z Hz]; rewrite Hz assoc agree_idemp. Qed. -Lemma agree_op_inv n (x1 x2 : agree A) : ✓{n} (x1 ⋅ x2) → x1 ≡{n}≡ x2. -Proof. intros Hxy; apply Hxy. Qed. +Lemma agree_op_inv_inclN n x1 x2 : ✓{n} (x1 ⋅ x2) → agree_dist_incl n x1 x2. +Proof. + rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2). + split; first by constructor. eapply Hv. + - simpl. destruct Ha as [->|Ha]; set_solver. + - simpl. set_solver+. +Qed. +Lemma agree_op_invN n (x1 x2 : agree A) : ✓{n} (x1 ⋅ x2) → x1 ≡{n}≡ x2. +Proof. + intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm. +Qed. + Lemma agree_valid_includedN n (x y : agree A) : ✓{n} y → x ≼{n} y → x ≡{n}≡ y. Proof. move=> Hval [z Hy]; move: Hval; rewrite Hy. - by move=> /agree_op_inv->; rewrite agree_idemp. + by move=> /agree_op_invN->; rewrite agree_idemp. Qed. Definition agree_cmra_mixin : CMRAMixin (agree A). Proof. apply cmra_total_mixin; try apply _ || by eauto. - - intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?]. - rewrite -(Hx n'); last auto. - symmetry; apply dist_le with n; try apply Hx; auto. + - move=>x. split. + + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb. + apply equiv_dist, Hx; done. + + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb. + apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done. + - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S. - intros x. apply agree_idemp. - - by intros n x y [(?&?&?) ?]. + - intros ??? Hl. apply: list_agrees_contains Hl. set_solver. - intros n x y1 y2 Hval Hx; exists x, x; simpl; split. + by rewrite agree_idemp. - + by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idemp. + + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp. Qed. Canonical Structure agreeR : cmraT := CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin. @@ -125,60 +321,114 @@ Proof. rewrite /CMRATotal; eauto. Qed. Global Instance agree_persistent (x : agree A) : Persistent x. Proof. by constructor. Qed. -Program Definition to_agree (x : A) : agree A := - {| agree_car n := x; agree_is_valid n := True |}. -Solve Obligations with done. +Lemma agree_op_inv (x1 x2 : agree A) : ✓ (x1 ⋅ x2) → x1 ≡ x2. +Proof. + intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN. +Qed. + +Global Instance agree_discrete : + Discrete A → CMRADiscrete agreeR. +Proof. + intros HD. split. + - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD. + intros x y ?. apply equiv_dist, HD. done. + - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=. + move=> x. apply (list_agrees_subrel _ _). clear -HD. + intros x y. apply HD. +Qed. + +Definition to_agree (x : A) : agree A := + {| agree_car := x; agree_with := [] |}. Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree. -Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed. +Proof. + intros x1 x2 Hx; rewrite /= /dist /agree_dist /=. + exact: list_setequiv_singleton. +Qed. Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper _. -Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree). -Proof. by intros x y [_ Hxy]; apply Hxy. Qed. +Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree). +Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. +Global Instance to_agree_inj : Inj (≡) (≡) (to_agree). +Proof. + intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist. +Qed. Lemma to_agree_uninj n (x : agree A) : ✓{n} x → ∃ y : A, to_agree y ≡{n}≡ x. Proof. - intros [??]. exists (agree_car x n). - split; naive_solver eauto using agree_valid_le. + intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=. + split. + - apply: list_setincl_singleton_in. set_solver+. + - apply (list_agrees_iff_setincl _); first set_solver+. done. +Qed. + +Lemma to_agree_included (a b : A) : to_agree a ≼ to_agree b ↔ a ≡ b. +Proof. + split. + - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl]. + (* TODO: This could become a generic lemma about list_setincl. *) + destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+. + done. + - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp. +Qed. + +Lemma to_agree_comp_valid (a b : A) : ✓ (to_agree a ⋅ to_agree b) ↔ a ≡ b. +Proof. + split. + - (* TODO: can this be derived from other stuff? Otherwise, should probably become sth. generic about list_agrees. *) + intros Hv. apply Hv; simpl; set_solver. + - intros ->. rewrite agree_idemp. done. Qed. (** Internalized properties *) Lemma agree_equivI {M} a b : to_agree a ≡ to_agree b ⊣⊢ (a ≡ b : uPred M). Proof. - uPred.unseal. do 2 split. by intros [? Hv]; apply (Hv n). apply: to_agree_ne. + uPred.unseal. do 2 split. + - intros Hx. exact: to_agree_injN. + - intros Hx. exact: to_agree_ne. Qed. Lemma agree_validI {M} x y : ✓ (x ⋅ y) ⊢ (x ≡ y : uPred M). -Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_inv. Qed. +Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed. End agree. Arguments agreeC : clear implicits. Arguments agreeR : clear implicits. Program Definition agree_map {A B} (f : A → B) (x : agree A) : agree B := - {| agree_car n := f (agree_car x n); agree_is_valid := agree_is_valid x; - agree_valid_S := agree_valid_S _ x |}. + {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}. Lemma agree_map_id {A} (x : agree A) : agree_map id x = x. -Proof. by destruct x. Qed. +Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed. Lemma agree_map_compose {A B C} (f : A → B) (g : B → C) (x : agree A) : agree_map (g ∘ f) x = agree_map g (agree_map f x). -Proof. done. Qed. +Proof. rewrite /agree_map /= list_fmap_compose. done. Qed. Section agree_map. Context {A B : ofeT} (f : A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}. Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f). - Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed. + Proof. + intros x y Hxy. + change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))). + eapply list_setequiv_fmap; last exact Hxy. apply _. + Qed. Instance agree_map_proper : Proper ((≡) ==> (≡)) (agree_map f) := ne_proper _. + Lemma agree_map_ext (g : A → B) x : (∀ x, f x ≡ g x) → agree_map f x ≡ agree_map g x. - Proof. by intros Hfg; split; simpl; intros; rewrite ?Hfg. Qed. + Proof. + intros Hfg n. apply: list_setequiv_ext. + change (f <$> (agree_list x) ≡{n}≡ g <$> (agree_list x)). + apply list_fmap_ext_ne=>y. by apply equiv_dist. + Qed. + Global Instance agree_map_monotone : CMRAMonotone (agree_map f). Proof. split; first apply _. - - by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]. + - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?. + change (list_agrees (dist n) (f <$> agree_list x)). + eapply (list_agrees_fmap _ _ _); done. - intros x y; rewrite !agree_included=> ->. - split; last done; split; simpl; last tauto. - by intros (?&?&Hxy); repeat split; intros; - try apply Hxy; try apply Hf; eauto using @agree_valid_le. + rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=. + rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+. Qed. End agree_map. @@ -186,8 +436,9 @@ Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B := CofeMor (agree_map f : agreeC A → agreeC B). Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B). Proof. - intros f g Hfg x; split; simpl; intros; first done. - by apply dist_le with n; try apply Hfg. + intros f g Hfg x. apply: list_setequiv_ext. + change (f <$> (agree_list x) ≡{n}≡ g <$> (agree_list x)). + apply list_fmap_ext_ne. done. Qed. Program Definition agreeRF (F : cFunctor) : rFunctor := {|