diff --git a/docs/resource_algebras.md b/docs/resource_algebras.md index 47553ecfb70ca661c9e2e7856aeb53806d9905fd..fb59163a10bd29a801230415598b269c527ec168 100644 --- a/docs/resource_algebras.md +++ b/docs/resource_algebras.md @@ -217,23 +217,23 @@ F (X,Xâ») := gmap K (agree (nat * â–¶ X)) To make it convenient to construct such functors and prove their contractivity, we provide a number of abstractions: -- [`cFunctor`](iris/algebra/ofe.v): functors from COFEs to OFEs. +- [`oFunctor`](iris/algebra/ofe.v): functors from COFEs to OFEs. - [`rFunctor`](iris/algebra/cmra.v): functors from COFEs to cameras. - [`urFunctor`](iris/algebra/cmra.v): functors from COFEs to unital cameras. -Besides, there are the classes `cFunctorContractive`, `rFunctorContractive`, and +Besides, there are the classes `oFunctorContractive`, `rFunctorContractive`, and `urFunctorContractive` which describe the subset of the above functors that are contractive. To compose these functors, we provide a number of combinators, e.g.: -- `constOF (A : ofe) : cFunctor := λ (B,Bâ»), A ` -- `idOF : cFunctor := λ (B,Bâ»), B` -- `prodOF (F1 F2 : cFunctor) : cFunctor := λ (B,Bâ»), F1 (B,Bâ») * F2 (B,Bâ»)` -- `ofe_morOF (F1 F2 : cFunctor) : cFunctor := λ (B,Bâ»), F1 (Bâ»,B) -n> F2 (B,Bâ»)` -- `laterOF (F : cFunctor) : cFunctor := λ (B,Bâ»), later (F (B,Bâ»))` -- `agreeRF (F : cFunctor) : rFunctor := λ (B,Bâ»), agree (F (B,Bâ»))` +- `constOF (A : ofe) : oFunctor := λ (B,Bâ»), A ` +- `idOF : oFunctor := λ (B,Bâ»), B` +- `prodOF (F1 F2 : oFunctor) : oFunctor := λ (B,Bâ»), F1 (B,Bâ») * F2 (B,Bâ»)` +- `ofe_morOF (F1 F2 : oFunctor) : oFunctor := λ (B,Bâ»), F1 (Bâ»,B) -n> F2 (B,Bâ»)` +- `laterOF (F : oFunctor) : oFunctor := λ (B,Bâ»), later (F (B,Bâ»))` +- `agreeRF (F : oFunctor) : rFunctor := λ (B,Bâ»), agree (F (B,Bâ»))` - `gmapURF K (F : rFunctor) : urFunctor := λ (B,Bâ»), gmap K (F (B,Bâ»))` Note in particular how the functor for the function space, `ofe_morOF`, swaps