diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 4eae60614245cb06c1c17ddc3318b74949a2c988..f781a15d69fbd549440726b06fb42350ba1e726a 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -1519,3 +1519,84 @@ Arguments sigTOF {_} _%OF. Notation "{ x & P }" := (sigTOF (λ x, P%OF)) : oFunctor_scope. Notation "{ x : A & P }" := (@sigTOF A%type (λ x, P%OF)) : oFunctor_scope. + +Record ofe_iso (A B : ofeT) := OfeIso { + ofe_iso_1 : A -n> B; + ofe_iso_2 : B -n> A; + ofe_iso_12 y : ofe_iso_1 (ofe_iso_2 y) ≡ y; + ofe_iso_21 x : ofe_iso_2 (ofe_iso_1 x) ≡ x; +}. +Arguments OfeIso {_ _} _ _ _ _. +Arguments ofe_iso_1 {_ _} _. +Arguments ofe_iso_2 {_ _} _. +Arguments ofe_iso_12 {_ _} _ _. +Arguments ofe_iso_21 {_ _} _ _. + +Section ofe_iso. + Context {A B : ofeT}. + + Instance ofe_iso_equiv : Equiv (ofe_iso A B) := λ I1 I2, + ofe_iso_1 I1 ≡ ofe_iso_1 I2 ∧ ofe_iso_2 I1 ≡ ofe_iso_2 I2. + + Instance ofe_iso_dist : Dist (ofe_iso A B) := λ n I1 I2, + ofe_iso_1 I1 ≡{n}≡ ofe_iso_1 I2 ∧ ofe_iso_2 I1 ≡{n}≡ ofe_iso_2 I2. + + Global Instance ofe_iso_1_ne : NonExpansive (ofe_iso_1 (A:=A) (B:=B)). + Proof. by destruct 1. Qed. + Global Instance ofe_iso_2_ne : NonExpansive (ofe_iso_2 (A:=A) (B:=B)). + Proof. by destruct 1. Qed. + + Lemma iso_ofe_ofe_mixin : OfeMixin (ofe_iso A B). + Proof. by apply (iso_ofe_mixin (λ I, (ofe_iso_1 I, ofe_iso_2 I))). Qed. + Canonical Structure ofe_isoO : ofeT := OfeT (ofe_iso A B) iso_ofe_ofe_mixin. + + Global Instance iso_ofe_cofe `{!Cofe A, !Cofe B} : Cofe ofe_isoO. + Proof. + apply (iso_cofe_subtype' + (λ I : prodO (A -n> B) (B -n> A), + (∀ y, I.1 (I.2 y) ≡ y) ∧ (∀ x, I.2 (I.1 x) ≡ x)) + (λ I HI, OfeIso (I.1) (I.2) (proj1 HI) (proj2 HI)) + (λ I, (ofe_iso_1 I, ofe_iso_2 I))); [by intros []|done|done|]. + apply limit_preserving_and; apply limit_preserving_forall=> ?; + apply limit_preserving_equiv; first [intros ???; done|solve_proper]. + Qed. +End ofe_iso. + +Arguments ofe_isoO : clear implicits. + +Program Definition iso_ofe_refl {A} : ofe_iso A A := OfeIso cid cid _ _. +Solve Obligations with done. + +Definition iso_ofe_sym {A B : ofeT} (I : ofe_iso A B) : ofe_iso B A := + OfeIso (ofe_iso_2 I) (ofe_iso_1 I) (ofe_iso_21 I) (ofe_iso_12 I). +Instance iso_ofe_sym_ne {A B} : NonExpansive (iso_ofe_sym (A:=A) (B:=B)). +Proof. intros n I1 I2 []; split; simpl; by f_equiv. Qed. + +Program Definition iso_ofe_trans {A B C} + (I : ofe_iso A B) (J : ofe_iso B C) : ofe_iso A C := + OfeIso (ofe_iso_1 J ◎ ofe_iso_1 I) (ofe_iso_2 I ◎ ofe_iso_2 J) _ _. +Next Obligation. intros A B C I J z; simpl. by rewrite !ofe_iso_12. Qed. +Next Obligation. intros A B C I J z; simpl. by rewrite !ofe_iso_21. Qed. +Instance iso_ofe_trans_ne {A B C} : NonExpansive2 (iso_ofe_trans (A:=A) (B:=B) (C:=C)). +Proof. intros n I1 I2 [] J1 J2 []; split; simpl; by f_equiv. Qed. + +Program Definition iso_ofe_cong (F : oFunctor) `{!Cofe A, !Cofe B} + (I : ofe_iso A B) : ofe_iso (F A _) (F B _) := + OfeIso (oFunctor_map F (ofe_iso_2 I, ofe_iso_1 I)) + (oFunctor_map F (ofe_iso_1 I, ofe_iso_2 I)) _ _. +Next Obligation. + intros F A ? B ? I x. rewrite -oFunctor_compose -{2}(oFunctor_id F x). + apply equiv_dist=> n. + apply oFunctor_ne; split=> ? /=; by rewrite ?ofe_iso_12 ?ofe_iso_21. +Qed. +Next Obligation. + intros F A ? B ? I y. rewrite -oFunctor_compose -{2}(oFunctor_id F y). + apply equiv_dist=> n. + apply oFunctor_ne; split=> ? /=; by rewrite ?ofe_iso_12 ?ofe_iso_21. +Qed. +Instance iso_ofe_cong_ne (F : oFunctor) `{!Cofe A, !Cofe B} : + NonExpansive (iso_ofe_cong F (A:=A) (B:=B)). +Proof. intros n I1 I2 []; split; simpl; by f_equiv. Qed. +Instance iso_ofe_cong_contractive (F : oFunctor) `{!Cofe A, !Cofe B} : + oFunctorContractive F → Contractive (iso_ofe_cong F (A:=A) (B:=B)). +Proof. intros ? n I1 I2 HI; split; simpl; f_contractive; by destruct HI. Qed.