diff --git a/algebra/excl.v b/algebra/excl.v index f93c4339abcffeaf3eee3229d60b620b0d5be1ec..bd1bc8612c786425b8a9f7328960769fe438e1fb 100644 --- a/algebra/excl.v +++ b/algebra/excl.v @@ -120,11 +120,11 @@ Lemma excl_validN_inv_l n mx a : ✓{n} (Excl' a ⋅ mx) → mx = None. Proof. by destruct mx. Qed. Lemma excl_validN_inv_r n mx a : ✓{n} (mx ⋅ Excl' a) → mx = None. Proof. by destruct mx. Qed. -Lemma Excl_includedN n a mx : ✓{n} mx → Excl' a ≼{n} mx ↔ mx ≡{n}≡ Excl' a. -Proof. - intros Hvalid; split; [|by intros ->]. - intros [z ?]; cofe_subst. by rewrite (excl_validN_inv_l n z a). -Qed. + +Lemma Excl_includedN n a b : Excl' a ≼{n} Excl' b → a ≡{n}≡ b. +Proof. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. Qed. +Lemma Excl_included a b : Excl' a ≼ Excl' b → a ≡ b. +Proof. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. Qed. End excl. Arguments exclC : clear implicits.