diff --git a/theories/algebra/cofe_solver.v b/theories/algebra/cofe_solver.v
index 2527765eb8654eeda68ca410abedc84be56dd762..bb2396e0e9394b5d55a2676cc9614edbbcd54ae3 100644
--- a/theories/algebra/cofe_solver.v
+++ b/theories/algebra/cofe_solver.v
@@ -1,6 +1,5 @@
 From iris.algebra Require Export ofe.
-(* FIXME: This file needs a 'Proof Using' hint, but the default we use
-   everywhere makes for lots of extra ssumptions. *)
+Set Default Proof Using "Type".
 
 Record solution (F : cFunctor) := Solution {
   solution_car :> ofeT;
@@ -22,7 +21,7 @@ Notation map := (cFunctor_map F).
 Fixpoint A (k : nat) : ofeT :=
   match k with 0 => unitC | S k => F (A k) end.
 Local Instance: ∀ k, Cofe (A k).
-Proof. induction 0; apply _. Defined.
+Proof using Fcofe. induction 0; apply _. Defined.
 Fixpoint f (k : nat) : A k -n> A (S k) :=
   match k with 0 => CofeMor (λ _, inhabitant) | S k => map (g k,f k) end
 with g (k : nat) : A (S k) -n> A k :=
@@ -34,12 +33,12 @@ Arguments f : simpl never.
 Arguments g : simpl never.
 
 Lemma gf {k} (x : A k) : g k (f k x) ≡ x.
-Proof.
+Proof using Fcontr.
   induction k as [|k IH]; simpl in *; [by destruct x|].
   rewrite -cFunctor_compose -{2}[x]cFunctor_id. by apply (contractive_proper map).
 Qed.
 Lemma fg {k} (x : A (S (S k))) : f (S k) (g (S k) x) ≡{k}≡ x.
-Proof.
+Proof using Fcontr.
   induction k as [|k IH]; simpl.
   - rewrite f_S g_S -{2}[x]cFunctor_id -cFunctor_compose.
     apply (contractive_0 map).
@@ -88,11 +87,11 @@ Fixpoint ff {k} (i : nat) : A k -n> A (i + k) :=
 Fixpoint gg {k} (i : nat) : A (i + k) -n> A k :=
   match i with 0 => cid | S i => gg i â—Ž g (i + k) end.
 Lemma ggff {k i} (x : A k) : gg i (ff i x) ≡ x.
-Proof. induction i as [|i IH]; simpl; [done|by rewrite (gf (ff i x)) IH]. Qed.
+Proof using Fcontr. induction i as [|i IH]; simpl; [done|by rewrite (gf (ff i x)) IH]. Qed.
 Lemma f_tower k (X : tower) : f (S k) (X (S k)) ≡{k}≡ X (S (S k)).
-Proof. intros. by rewrite -(fg (X (S (S k)))) -(g_tower X). Qed.
+Proof using Fcontr. intros. by rewrite -(fg (X (S (S k)))) -(g_tower X). Qed.
 Lemma ff_tower k i (X : tower) : ff i (X (S k)) ≡{k}≡ X (i + S k).
-Proof.
+Proof using Fcontr.
   intros; induction i as [|i IH]; simpl; [done|].
   by rewrite IH Nat.add_succ_r (dist_le _ _ _ _ (f_tower _ X)); last omega.
 Qed.
@@ -138,7 +137,7 @@ Definition embed_coerce {k} (i : nat) : A k -n> A i :=
   end.
 Lemma g_embed_coerce {k i} (x : A k) :
   g i (embed_coerce (S i) x) ≡ embed_coerce i x.
-Proof.
+Proof using Fcontr.
   unfold embed_coerce; destruct (le_lt_dec (S i) k), (le_lt_dec i k); simpl.
   - symmetry; by erewrite (@gg_gg _ _ 1 (k - S i)); simpl.
   - exfalso; lia.
@@ -206,7 +205,7 @@ Instance fold_ne : Proper (dist n ==> dist n) fold.
 Proof. by intros n X Y HXY k; rewrite /fold /= HXY. Qed.
 
 Theorem result : solution F.
-Proof.
+Proof using All.
   apply (Solution F T _ (CofeMor unfold) (CofeMor fold)).
   - move=> X /=. rewrite equiv_dist=> n k; rewrite /unfold /fold /=.
     rewrite -g_tower -(gg_tower _ n); apply (_ : Proper (_ ==> _) (g _)).
diff --git a/theories/algebra/gmap.v b/theories/algebra/gmap.v
index e140399cae69cb991ec7a2c607f9d5213376f582..c2272a18c9048014ffaca1042b7fe48cb859a1ed 100644
--- a/theories/algebra/gmap.v
+++ b/theories/algebra/gmap.v
@@ -358,34 +358,34 @@ Section freshness.
   Lemma alloc_updateP' m x :
     ✓ x → m ~~>: λ m', ∃ i, m' = <[i:=x]>m ∧ m !! i = None.
   Proof. eauto using alloc_updateP. Qed.
-
-  Lemma alloc_unit_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) u i :
-    ✓ u → LeftId (≡) u (⋅) →
-    u ~~>: P → (∀ y, P y → Q {[ i := y ]}) → ∅ ~~>: Q.
-  Proof.
-    intros ?? Hx HQ. apply cmra_total_updateP=> n gf Hg.
-    destruct (Hx n (gf !! i)) as (y&?&Hy).
-    { move:(Hg i). rewrite !left_id.
-      case: (gf !! i)=>[x|]; rewrite /= ?left_id //.
-      intros; by apply cmra_valid_validN. }
-    exists {[ i := y ]}; split; first by auto.
-    intros i'; destruct (decide (i' = i)) as [->|].
-    - rewrite lookup_op lookup_singleton.
-      move:Hy; case: (gf !! i)=>[x|]; rewrite /= ?right_id //.
-    - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
-  Qed.
-  Lemma alloc_unit_singleton_updateP' (P: A → Prop) u i :
-    ✓ u → LeftId (≡) u (⋅) →
-    u ~~>: P → ∅ ~~>: λ m, ∃ y, m = {[ i := y ]} ∧ P y.
-  Proof. eauto using alloc_unit_singleton_updateP. Qed.
-  Lemma alloc_unit_singleton_update (u : A) i (y : A) :
-    ✓ u → LeftId (≡) u (⋅) → u ~~> y → (∅:gmap K A) ~~> {[ i := y ]}.
-  Proof.
-    rewrite !cmra_update_updateP;
-      eauto using alloc_unit_singleton_updateP with subst.
-  Qed.
 End freshness.
 
+Lemma alloc_unit_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) u i :
+  ✓ u → LeftId (≡) u (⋅) →
+  u ~~>: P → (∀ y, P y → Q {[ i := y ]}) → ∅ ~~>: Q.
+Proof.
+  intros ?? Hx HQ. apply cmra_total_updateP=> n gf Hg.
+  destruct (Hx n (gf !! i)) as (y&?&Hy).
+  { move:(Hg i). rewrite !left_id.
+    case: (gf !! i)=>[x|]; rewrite /= ?left_id //.
+    intros; by apply cmra_valid_validN. }
+  exists {[ i := y ]}; split; first by auto.
+  intros i'; destruct (decide (i' = i)) as [->|].
+  - rewrite lookup_op lookup_singleton.
+    move:Hy; case: (gf !! i)=>[x|]; rewrite /= ?right_id //.
+  - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
+Qed.
+Lemma alloc_unit_singleton_updateP' (P: A → Prop) u i :
+  ✓ u → LeftId (≡) u (⋅) →
+  u ~~>: P → ∅ ~~>: λ m, ∃ y, m = {[ i := y ]} ∧ P y.
+Proof. eauto using alloc_unit_singleton_updateP. Qed.
+Lemma alloc_unit_singleton_update (u : A) i (y : A) :
+  ✓ u → LeftId (≡) u (⋅) → u ~~> y → (∅:gmap K A) ~~> {[ i := y ]}.
+Proof.
+  rewrite !cmra_update_updateP;
+    eauto using alloc_unit_singleton_updateP with subst.
+Qed.
+
 Lemma alloc_local_update m1 m2 i x :
   m1 !! i = None → ✓ x → (m1,m2) ~l~> (<[i:=x]>m1, <[i:=x]>m2).
 Proof.
diff --git a/theories/algebra/iprod.v b/theories/algebra/iprod.v
index 9744e1355841672da6a8a9ba7585f20f517c8e9b..479e74c2f0a9a610ab71555b15c0ddf542117058 100644
--- a/theories/algebra/iprod.v
+++ b/theories/algebra/iprod.v
@@ -43,8 +43,6 @@ Section iprod_cofe.
   Qed.
 
   (** Properties of iprod_insert. *)
-  Context `{EqDecision A}.
-
   Global Instance iprod_insert_ne n x :
     Proper (dist n ==> dist n ==> dist n) (iprod_insert x).
   Proof.
diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v
index 6e201a88958c3de7515bccc66b8a17e5e4aa261a..fbec685edc45a40d108dea675f49ee07743ef575 100644
--- a/theories/algebra/ofe.v
+++ b/theories/algebra/ofe.v
@@ -255,6 +255,8 @@ End fixpoint.
 
 (** Mutual fixpoints *)
 Section fixpoint2.
+  Local Unset Default Proof Using.
+
   Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
   Context (fA : A → B → A).
   Context (fB : A → B → B).
diff --git a/theories/algebra/updates.v b/theories/algebra/updates.v
index dc7a42fe10dc1bd6d862fd80b09e579e3437e1f3..35d63746e13d986dec87fe5cc27a3016f50d95c2 100644
--- a/theories/algebra/updates.v
+++ b/theories/algebra/updates.v
@@ -107,7 +107,7 @@ Section total_updates.
     rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
     naive_solver eauto using 0.
   Qed.
-  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
+  Lemma cmra_discrete_update (x y : A) :
     x ~~> y ↔ ∀ z, ✓ (x ⋅ z) → ✓ (y ⋅ z).
   Proof.
     rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
diff --git a/theories/base_logic/lib/sts.v b/theories/base_logic/lib/sts.v
index e66b620f8e1a24b86f2b6382b01bfd87185f9187..a87844443106f691ee8f1f71b00b5355d099ac78 100644
--- a/theories/base_logic/lib/sts.v
+++ b/theories/base_logic/lib/sts.v
@@ -16,7 +16,7 @@ Instance subG_stsΣ Σ sts :
 Proof. intros ?%subG_inG ?. by split. Qed.
 
 Section definitions.
-  Context `{invG Σ, stsG Σ sts} (γ : gname).
+  Context `{stsG Σ sts} (γ : gname).
 
   Definition sts_ownS (S : sts.states sts) (T : sts.tokens sts) : iProp Σ :=
     own γ (sts_frag S T).
@@ -24,7 +24,7 @@ Section definitions.
     own γ (sts_frag_up s T).
   Definition sts_inv (φ : sts.state sts → iProp Σ) : iProp Σ :=
     (∃ s, own γ (sts_auth s ∅) ∗ φ s)%I.
-  Definition sts_ctx (N : namespace) (φ: sts.state sts → iProp Σ) : iProp Σ :=
+  Definition sts_ctx `{!invG Σ} (N : namespace) (φ: sts.state sts → iProp Σ) : iProp Σ :=
     inv N (sts_inv φ).
 
   Global Instance sts_inv_ne n :
@@ -37,13 +37,13 @@ Section definitions.
   Proof. solve_proper. Qed.
   Global Instance sts_own_proper s : Proper ((≡) ==> (⊣⊢)) (sts_own s).
   Proof. solve_proper. Qed.
-  Global Instance sts_ctx_ne n N :
+  Global Instance sts_ctx_ne `{!invG Σ} n N :
     Proper (pointwise_relation _ (dist n) ==> dist n) (sts_ctx N).
   Proof. solve_proper. Qed.
-  Global Instance sts_ctx_proper N :
+  Global Instance sts_ctx_proper `{!invG Σ} N :
     Proper (pointwise_relation _ (≡) ==> (⊣⊢)) (sts_ctx N).
   Proof. solve_proper. Qed.
-  Global Instance sts_ctx_persistent N φ : PersistentP (sts_ctx N φ).
+  Global Instance sts_ctx_persistent `{!invG Σ} N φ : PersistentP (sts_ctx N φ).
   Proof. apply _. Qed.
   Global Instance sts_own_peristent s : PersistentP (sts_own s ∅).
   Proof. apply _. Qed.
diff --git a/theories/prelude/countable.v b/theories/prelude/countable.v
index aa8ae1b3cdc5082645de6124f874dd5548c99841..37f0d922da96e6670680327884c1050bf830c177 100644
--- a/theories/prelude/countable.v
+++ b/theories/prelude/countable.v
@@ -32,7 +32,7 @@ Qed.
 
 (** * Choice principles *)
 Section choice.
-  Context `{Countable A} (P : A → Prop) `{∀ x, Decision (P x)}.
+  Context `{Countable A} (P : A → Prop).
 
   Inductive choose_step: relation positive :=
     | choose_step_None {p} : decode p = None → choose_step (Psucc p) p
@@ -50,6 +50,9 @@ Section choice.
     constructor. intros j.
     inversion 1 as [? Hd|? y Hd]; subst; auto with lia.
   Qed.
+
+  Context `{∀ x, Decision (P x)}.
+
   Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
     match Some_dec (decode i) with
     | inleft (x↾Hx) =>
diff --git a/theories/prelude/fin_maps.v b/theories/prelude/fin_maps.v
index aba8c7479b8660a6d51efafd1569992767c89e42..2dc9df1bdd7027644c4418a104c3b74b3550a227 100644
--- a/theories/prelude/fin_maps.v
+++ b/theories/prelude/fin_maps.v
@@ -118,7 +118,13 @@ Context `{FinMap K M}.
 
 (** ** Setoids *)
 Section setoid.
-  Context `{Equiv A} `{!Equivalence ((≡) : relation A)}.
+  Context `{Equiv A}.
+  
+  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
+    m1 ≡ m2 → m1 !! i = Some x → ∃ y, m2 !! i = Some y ∧ x ≡ y.
+  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
+
+  Context `{!Equivalence ((≡) : relation A)}.
   Global Instance map_equivalence : Equivalence ((≡) : relation (M A)).
   Proof.
     split.
@@ -173,9 +179,6 @@ Section setoid.
     split; [intros Hm; apply map_eq; intros i|by intros ->].
     by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
   Qed.
-  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
-    m1 ≡ m2 → m1 !! i = Some x → ∃ y, m2 !! i = Some y ∧ x ≡ y.
-  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
   Global Instance map_fmap_proper `{Equiv B} (f : A → B) :
     Proper ((≡) ==> (≡)) f → Proper ((≡) ==> (≡)) (fmap (M:=M) f).
   Proof.
diff --git a/theories/prelude/finite.v b/theories/prelude/finite.v
index 7109bf3a7dceef7308a830dccee6c3f8876f6864..9c51d7cbf7442d4a67ce05b818f57dc27841544f 100644
--- a/theories/prelude/finite.v
+++ b/theories/prelude/finite.v
@@ -171,13 +171,15 @@ Proof. apply finite_bijective. eauto. Qed.
 
 (** Decidability of quantification over finite types *)
 Section forall_exists.
-  Context `{Finite A} (P : A → Prop) `{∀ x, Decision (P x)}.
+  Context `{Finite A} (P : A → Prop).
 
   Lemma Forall_finite : Forall P (enum A) ↔ (∀ x, P x).
   Proof. rewrite Forall_forall. intuition auto using elem_of_enum. Qed.
   Lemma Exists_finite : Exists P (enum A) ↔ (∃ x, P x).
   Proof. rewrite Exists_exists. naive_solver eauto using elem_of_enum. Qed.
 
+  Context `{∀ x, Decision (P x)}.
+
   Global Instance forall_dec: Decision (∀ x, P x).
   Proof.
    refine (cast_if (decide (Forall P (enum A))));
diff --git a/theories/prelude/list.v b/theories/prelude/list.v
index 7228aa6f1be4ad9dc90cbddaed7581188d0d139b..0384de643b1bd73e92092aa35dd5dde2a0f615fa 100644
--- a/theories/prelude/list.v
+++ b/theories/prelude/list.v
@@ -735,6 +735,28 @@ End no_dup_dec.
 
 (** ** Set operations on lists *)
 Section list_set.
+  Lemma elem_of_list_intersection_with f l k x :
+    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
+        x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
+  Proof.
+    split.
+    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
+      intros Hx. setoid_rewrite elem_of_cons.
+      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
+           ∨ x ∈ list_intersection_with f l k); [naive_solver|].
+      clear IH. revert Hx. generalize (list_intersection_with f l k).
+      induction k; simpl; [by auto|].
+      case_match; setoid_rewrite elem_of_cons; naive_solver.
+    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
+      + generalize (list_intersection_with f l k).
+        induction Hx2; simpl; [by rewrite Hx; left |].
+        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
+      + generalize (IH Hx). clear Hx IH Hx2.
+        generalize (list_intersection_with f l k).
+        induction k; simpl; intros; [done|].
+        case_match; simpl; rewrite ?elem_of_cons; auto.
+  Qed.
+
   Context `{!EqDecision A}.
   Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
   Proof.
@@ -773,27 +795,6 @@ Section list_set.
     - constructor. rewrite elem_of_list_intersection; intuition. done.
     - done.
   Qed.
-  Lemma elem_of_list_intersection_with f l k x :
-    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
-      x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
-  Proof.
-    split.
-    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
-      intros Hx. setoid_rewrite elem_of_cons.
-      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
-        ∨ x ∈ list_intersection_with f l k); [naive_solver|].
-      clear IH. revert Hx. generalize (list_intersection_with f l k).
-      induction k; simpl; [by auto|].
-      case_match; setoid_rewrite elem_of_cons; naive_solver.
-    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
-      + generalize (list_intersection_with f l k).
-        induction Hx2; simpl; [by rewrite Hx; left |].
-        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
-      + generalize (IH Hx). clear Hx IH Hx2.
-        generalize (list_intersection_with f l k).
-        induction k; simpl; intros; [done|].
-        case_match; simpl; rewrite ?elem_of_cons; auto.
-  Qed.
 End list_set.
 
 (** ** Properties of the [filter] function *)
@@ -2171,7 +2172,7 @@ Section Forall_Exists.
   Lemma Forall_replicate n x : P x → Forall P (replicate n x).
   Proof. induction n; simpl; constructor; auto. Qed.
   Lemma Forall_replicate_eq n (x : A) : Forall (x =) (replicate n x).
-  Proof. induction n; simpl; constructor; auto. Qed.
+  Proof using -(P). induction n; simpl; constructor; auto. Qed.
   Lemma Forall_take n l : Forall P l → Forall P (take n l).
   Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
   Lemma Forall_drop n l : Forall P l → Forall P (drop n l).
@@ -2741,7 +2742,7 @@ End Forall3.
 
 (** Setoids *)
 Section setoid.
-  Context `{Equiv A} `{!Equivalence ((≡) : relation A)}.
+  Context `{Equiv A}.
   Implicit Types l k : list A.
 
   Lemma equiv_Forall2 l k : l ≡ k ↔ Forall2 (≡) l k.
@@ -2752,6 +2753,8 @@ Section setoid.
     by setoid_rewrite equiv_option_Forall2.
   Qed.
 
+  Context {Hequiv: Equivalence ((≡) : relation A)}.
+
   Global Instance list_equivalence : Equivalence ((≡) : relation (list A)).
   Proof.
     split.
@@ -2763,42 +2766,42 @@ Section setoid.
   Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
 
   Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡)) (@cons A).
-  Proof. by constructor. Qed.
+  Proof using -(Hequiv). by constructor. Qed.
   Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@app A).
-  Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
+  Proof using -(Hequiv). induction 1; intros ???; simpl; try constructor; auto. Qed.
   Global Instance length_proper : Proper ((≡) ==> (=)) (@length A).
-  Proof. induction 1; f_equal/=; auto. Qed.
+  Proof using -(Hequiv). induction 1; f_equal/=; auto. Qed.
   Global Instance tail_proper : Proper ((≡) ==> (≡)) (@tail A).
   Proof. by destruct 1. Qed.
   Global Instance take_proper n : Proper ((≡) ==> (≡)) (@take A n).
-  Proof. induction n; destruct 1; constructor; auto. Qed.
+  Proof using -(Hequiv). induction n; destruct 1; constructor; auto. Qed.
   Global Instance drop_proper n : Proper ((≡) ==> (≡)) (@drop A n).
-  Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
+  Proof using -(Hequiv). induction n; destruct 1; simpl; try constructor; auto. Qed.
   Global Instance list_lookup_proper i :
     Proper ((≡) ==> (≡)) (lookup (M:=list A) i).
   Proof. induction i; destruct 1; simpl; f_equiv; auto. Qed.
   Global Instance list_alter_proper f i :
     Proper ((≡) ==> (≡)) f → Proper ((≡) ==> (≡)) (alter (M:=list A) f i).
-  Proof. intros. induction i; destruct 1; constructor; eauto. Qed.
+  Proof using -(Hequiv). intros. induction i; destruct 1; constructor; eauto. Qed.
   Global Instance list_insert_proper i :
     Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=list A) i).
-  Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
+  Proof using -(Hequiv). intros ???; induction i; destruct 1; constructor; eauto. Qed.
   Global Instance list_inserts_proper i :
     Proper ((≡) ==> (≡) ==> (≡)) (@list_inserts A i).
-  Proof.
+  Proof using -(Hequiv).
     intros k1 k2 Hk; revert i.
     induction Hk; intros ????; simpl; try f_equiv; naive_solver.
   Qed.
   Global Instance list_delete_proper i :
     Proper ((≡) ==> (≡)) (delete (M:=list A) i).
-  Proof. induction i; destruct 1; try constructor; eauto. Qed.
+  Proof using -(Hequiv). induction i; destruct 1; try constructor; eauto. Qed.
   Global Instance option_list_proper : Proper ((≡) ==> (≡)) (@option_list A).
   Proof. destruct 1; by constructor. Qed.
   Global Instance list_filter_proper P `{∀ x, Decision (P x)} :
     Proper ((≡) ==> iff) P → Proper ((≡) ==> (≡)) (filter (B:=list A) P).
-  Proof. intros ???. rewrite !equiv_Forall2. by apply Forall2_filter. Qed.
+  Proof using -(Hequiv). intros ???. rewrite !equiv_Forall2. by apply Forall2_filter. Qed.
   Global Instance replicate_proper n : Proper ((≡) ==> (≡)) (@replicate A n).
-  Proof. induction n; constructor; auto. Qed.
+  Proof using -(Hequiv). induction n; constructor; auto. Qed.
   Global Instance reverse_proper : Proper ((≡) ==> (≡)) (@reverse A).
   Proof. induction 1; rewrite ?reverse_cons; repeat (done || f_equiv). Qed.
   Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
diff --git a/theories/prelude/option.v b/theories/prelude/option.v
index 242ad4f5f96ae13ba630351b8564c2abee9ed0a5..4988d7ba153a97404575363615f363ea328a69f5 100644
--- a/theories/prelude/option.v
+++ b/theories/prelude/option.v
@@ -115,18 +115,18 @@ End Forall2.
 Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≡).
 
 Section setoids.
-  Context `{Equiv A} `{!Equivalence ((≡) : relation A)}.
+  Context `{Equiv A} {Hequiv: Equivalence ((≡) : relation A)}.
   Implicit Types mx my : option A.
 
   Lemma equiv_option_Forall2 mx my : mx ≡ my ↔ option_Forall2 (≡) mx my.
-  Proof. done. Qed.
+  Proof using -(Hequiv). done. Qed.
 
   Global Instance option_equivalence : Equivalence ((≡) : relation (option A)).
   Proof. apply _. Qed.
   Global Instance Some_proper : Proper ((≡) ==> (≡)) (@Some A).
-  Proof. by constructor. Qed.
+  Proof using -(Hequiv). by constructor. Qed.
   Global Instance Some_equiv_inj : Inj (≡) (≡) (@Some A).
-  Proof. by inversion_clear 1. Qed.
+  Proof using -(Hequiv). by inversion_clear 1. Qed.
   Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
   Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed.
 
@@ -134,17 +134,17 @@ Section setoids.
   Proof. split; [by inversion_clear 1|by intros ->]. Qed.
   Lemma equiv_Some_inv_l mx my x :
     mx ≡ my → mx = Some x → ∃ y, my = Some y ∧ x ≡ y.
-  Proof. destruct 1; naive_solver. Qed.
+  Proof using -(Hequiv). destruct 1; naive_solver. Qed.
   Lemma equiv_Some_inv_r mx my y :
     mx ≡ my → my = Some y → ∃ x, mx = Some x ∧ x ≡ y.
-  Proof. destruct 1; naive_solver. Qed.
+  Proof using -(Hequiv). destruct 1; naive_solver. Qed.
   Lemma equiv_Some_inv_l' my x : Some x ≡ my → ∃ x', Some x' = my ∧ x ≡ x'.
-  Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
+  Proof using -(Hequiv). intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
   Lemma equiv_Some_inv_r' mx y : mx ≡ Some y → ∃ y', mx = Some y' ∧ y ≡ y'.
   Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.
 
   Global Instance is_Some_proper : Proper ((≡) ==> iff) (@is_Some A).
-  Proof. inversion_clear 1; split; eauto. Qed.
+  Proof using -(Hequiv). inversion_clear 1; split; eauto. Qed.
   Global Instance from_option_proper {B} (R : relation B) (f : A → B) :
     Proper ((≡) ==> R) f → Proper (R ==> (≡) ==> R) (from_option f).
   Proof. destruct 3; simpl; auto. Qed.