diff --git a/theories/base_logic/base_logic.v b/theories/base_logic/base_logic.v index 2ea42a57a9fb5f9a38061ede335f4586cc885890..79029f48e4b9a8e42f8c6d5d80a0f68906595959 100644 --- a/theories/base_logic/base_logic.v +++ b/theories/base_logic/base_logic.v @@ -1,13 +1,12 @@ From iris.base_logic Require Export derived. -Module uPred. - Include uPred_entails. - Include uPred_primitive. - Include uPred_derived. +Module Import uPred. + Export upred.uPred. + Export primitive.uPred. + Export derived.uPred. End uPred. (* Hint DB for the logic *) -Import uPred. Hint Resolve pure_intro. Hint Resolve or_elim or_intro_l' or_intro_r' : I. Hint Resolve and_intro and_elim_l' and_elim_r' : I. diff --git a/theories/base_logic/derived.v b/theories/base_logic/derived.v index 7361ad14752e70666af09eaad19906a3e2a13897..80f7d2e175a13de4f60b7c4423b80cb5b9a395f5 100644 --- a/theories/base_logic/derived.v +++ b/theories/base_logic/derived.v @@ -1,5 +1,5 @@ From iris.base_logic Require Export primitive. -Import uPred_entails uPred_primitive. +Import upred.uPred primitive.uPred. Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P → Q) ∧ (Q → P))%I. Instance: Params (@uPred_iff) 1. @@ -34,7 +34,7 @@ Arguments timelessP {_} _ {_}. Class PersistentP {M} (P : uPred M) := persistentP : P ⊢ □ P. Arguments persistentP {_} _ {_}. -Module uPred_derived. +Module uPred. Section derived. Context {M : ucmraT}. Implicit Types φ : Prop. @@ -858,5 +858,4 @@ Proof. by rewrite -(always_always Q); apply always_entails_l'. Qed. Lemma always_entails_r P Q `{!PersistentP Q} : (P ⊢ Q) → P ⊢ P ∗ Q. Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed. End derived. - -End uPred_derived. +End uPred. diff --git a/theories/base_logic/double_negation.v b/theories/base_logic/double_negation.v index 566343342a23d42549d3b8c4161385ae54d83d24..7a31c8d93da90d3c014ea410f05bec5fd677eab9 100644 --- a/theories/base_logic/double_negation.v +++ b/theories/base_logic/double_negation.v @@ -1,5 +1,4 @@ From iris.base_logic Require Import base_logic. -Import upred. (* In this file we show that the bupd can be thought of a kind of step-indexed double-negation when our meta-logic is classical *) diff --git a/theories/base_logic/lib/fractional.v b/theories/base_logic/lib/fractional.v index cce3c8057cab7271dfe4d73f59ecfda721086cf5..49a856103799092a32ce4b34c6c9774905bb9e19 100644 --- a/theories/base_logic/lib/fractional.v +++ b/theories/base_logic/lib/fractional.v @@ -40,7 +40,7 @@ Section fractional. (** Fractional and logical connectives *) Global Instance persistent_fractional P : PersistentP P → Fractional (λ _, P). - Proof. intros HP q q'. by apply uPred_derived.always_sep_dup. Qed. + Proof. intros HP q q'. by apply uPred.always_sep_dup. Qed. Global Instance fractional_sep Φ Ψ : Fractional Φ → Fractional Ψ → Fractional (λ q, Φ q ∗ Ψ q)%I. diff --git a/theories/base_logic/primitive.v b/theories/base_logic/primitive.v index 85dfdb49ea08d8c48d3300a5a6e9090acf0caaa1..0a6c7239e5a53e0c0764d6864b77b84efaafedcb 100644 --- a/theories/base_logic/primitive.v +++ b/theories/base_logic/primitive.v @@ -192,7 +192,7 @@ Coercion uPred_valid {M} (P : uPred M) : Prop := True%I ⊢ P. Notation "P -∗ Q" := (P ⊢ Q) (at level 99, Q at level 200, right associativity) : C_scope. -Module uPred_primitive. +Module uPred. Definition unseal := (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq, uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_always_eq, @@ -596,4 +596,4 @@ Proof. by unseal. Qed. Lemma cofe_morC_equivI {A B : ofeT} (f g : A -n> B) : f ≡ g ⊣⊢ ∀ x, f x ≡ g x. Proof. by unseal. Qed. End primitive. -End uPred_primitive. +End uPred. diff --git a/theories/base_logic/soundness.v b/theories/base_logic/soundness.v index 501d8f1a2f0f106edefa8319acb784e7b96be3eb..b2c7d8abf2e851601c7cda8d7ab1a61c1f1fb836 100644 --- a/theories/base_logic/soundness.v +++ b/theories/base_logic/soundness.v @@ -1,5 +1,5 @@ -From iris.base_logic Require Export primitive derived. -Import uPred_entails uPred_primitive. +From iris.base_logic Require Export base_logic. +Import uPred. Section adequacy. Context {M : ucmraT}. diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v index ac98bdddc617447ec8de647344cce6372a077ca4..cb12bf33d8323527bfe7080a2c781996b03ab117 100644 --- a/theories/base_logic/upred.v +++ b/theories/base_logic/upred.v @@ -138,7 +138,7 @@ Notation "P ⊣⊢ Q" := (equiv (A:=uPred _) P%I Q%I) (at level 95, no associativity) : C_scope. Notation "(⊣⊢)" := (equiv (A:=uPred _)) (only parsing) : C_scope. -Module uPred_entails. +Module uPred. Section entails. Context {M : ucmraT}. Implicit Types P Q : uPred M. @@ -173,4 +173,4 @@ Proof. by intros ->. Qed. Lemma entails_equiv_r (P Q R : uPred M) : (P ⊢ Q) → (Q ⊣⊢ R) → (P ⊢ R). Proof. by intros ? <-. Qed. End entails. -End uPred_entails. +End uPred.