Commit adfc72fa authored by David Swasey's avatar David Swasey
Browse files

Statement of ra_sep_ex.

parent 109ed91f
......@@ -201,9 +201,8 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
Section Resources.
Lemma state_sep {σ g rf} (Hv : (ex_own σ, g) · rf) : fst rf == 1 (ex_own σ)
.
Proof. move: (ra_sep_prod Hv) => [Hs _]; exact: ra_sep_ex Hs. Qed.
Lemma state_sep {σ g rf} (Hv : (ex_own σ, g) · rf) : fst rf == 1 (ex_own σ).
Proof. move: (ra_sep_prod Hv) => [Hs _]. by rewrite (ra_sep_ex Hs). Qed.
Lemma state_fps {σ g σ' rf} (Hv : (ex_own σ, g) · rf) : (ex_own σ', g) · rf.
Proof. exact: (ra_fps_fst (ra_fps_ex σ σ') rf). Qed.
......
......@@ -73,7 +73,7 @@ Section Exclusive.
- intros [t1| |] [t2| |]; unfold ra_valid; simpl; now auto.
Qed.
Lemma ra_sep_ex {t r} : ex_own t · r -> r == 1 r.
Lemma ra_sep_ex {t r} : ex_own t · r -> r = 1 r.
Proof. by case: r. Qed.
Lemma ra_fps_ex_any t {r} (Hr : r) : ex_own t r.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment