Require Export modures.excl. Local Arguments valid _ _ !_ /. Local Arguments validN _ _ _ !_ /. Record auth (A : Type) : Type := Auth { authoritative : excl A ; own : A }. Arguments Auth {_} _ _. Arguments authoritative {_} _. Arguments own {_} _. Notation "◯ x" := (Auth ExclUnit x) (at level 20). Notation "● x" := (Auth (Excl x) ∅) (at level 20). (* COFE *) Section cofe. Context {A : cofeT}. Instance auth_equiv : Equiv (auth A) := λ x y, authoritative x ≡ authoritative y ∧ own x ≡ own y. Instance auth_dist : Dist (auth A) := λ n x y, authoritative x ={n}= authoritative y ∧ own x ={n}= own y. Global Instance Auth_ne : Proper (dist n ==> dist n ==> dist n) (@Auth A). Proof. by split. Qed. Global Instance authoritative_ne: Proper (dist n ==> dist n) (@authoritative A). Proof. by destruct 1. Qed. Global Instance own_ne : Proper (dist n ==> dist n) (@own A). Proof. by destruct 1. Qed. Instance auth_compl : Compl (auth A) := λ c, Auth (compl (chain_map authoritative c)) (compl (chain_map own c)). Definition auth_cofe_mixin : CofeMixin (auth A). Proof. split. * intros x y; unfold dist, auth_dist, equiv, auth_equiv. rewrite !equiv_dist; naive_solver. * intros n; split. + by intros ?; split. + by intros ?? [??]; split; symmetry. + intros ??? [??] [??]; split; etransitivity; eauto. * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S. * by split. * intros c n; split. apply (conv_compl (chain_map authoritative c) n). apply (conv_compl (chain_map own c) n). Qed. Canonical Structure authC := CofeT auth_cofe_mixin. Instance Auth_timeless (x : excl A) (y : A) : Timeless x → Timeless y → Timeless (Auth x y). Proof. by intros ?? [??] [??]; split; simpl in *; apply (timeless _). Qed. Global Instance auth_leibniz : LeibnizEquiv A → LeibnizEquiv (auth A). Proof. by intros ? [??] [??] [??]; f_equal'; apply leibniz_equiv. Qed. End cofe. Arguments authC : clear implicits. (* CMRA *) Section cmra. Context {A : cmraT}. Global Instance auth_empty `{Empty A} : Empty (auth A) := Auth ∅ ∅. Instance auth_valid : Valid (auth A) := λ x, match authoritative x with | Excl a => own x ≼ a ∧ ✓ a | ExclUnit => ✓ (own x) | ExclBot => False end. Global Arguments auth_valid !_ /. Instance auth_validN : ValidN (auth A) := λ n x, match authoritative x with | Excl a => own x ≼{n} a ∧ ✓{n} a | ExclUnit => ✓{n} (own x) | ExclBot => n = 0 end. Global Arguments auth_validN _ !_ /. Instance auth_unit : Unit (auth A) := λ x, Auth (unit (authoritative x)) (unit (own x)). Instance auth_op : Op (auth A) := λ x y, Auth (authoritative x ⋅ authoritative y) (own x ⋅ own y). Instance auth_minus : Minus (auth A) := λ x y, Auth (authoritative x ⩪ authoritative y) (own x ⩪ own y). Lemma auth_included (x y : auth A) : x ≼ y ↔ authoritative x ≼ authoritative y ∧ own x ≼ own y. Proof. split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto. Qed. Lemma auth_includedN n (x y : auth A) : x ≼{n} y ↔ authoritative x ≼{n} authoritative y ∧ own x ≼{n} own y. Proof. split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto. Qed. Lemma authoritative_validN n (x : auth A) : ✓{n} x → ✓{n} (authoritative x). Proof. by destruct x as [[]]. Qed. Lemma own_validN n (x : auth A) : ✓{n} x → ✓{n} (own x). Proof. destruct x as [[]]; naive_solver eauto using cmra_valid_includedN. Qed. Definition auth_cmra_mixin : CMRAMixin (auth A). Proof. split. * by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'. * by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'. * intros n [x a] [y b] [Hx Ha]; simpl in *; destruct Hx as [[][]| | |]; intros ?; cofe_subst; auto. * by intros n x1 x2 [Hx Hx'] y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy' ?Hx ?Hx'. * by intros [[] ?]; simpl. * intros n [[] ?] ?; naive_solver eauto using cmra_included_S, cmra_valid_S. * destruct x as [[a| |] b]; simpl; rewrite ?cmra_included_includedN ?cmra_valid_validN; [naive_solver|naive_solver|]. split; [done|intros Hn; discriminate (Hn 1)]. * by split; simpl; rewrite (associative _). * by split; simpl; rewrite (commutative _). * by split; simpl; rewrite ?(ra_unit_l _). * by split; simpl; rewrite ?(ra_unit_idempotent _). * intros n ??; rewrite! auth_includedN; intros [??]. by split; simpl; apply cmra_unit_preserving. * assert (∀ n (a b1 b2 : A), b1 ⋅ b2 ≼{n} a → b1 ≼{n} a). { intros n a b1 b2 <-; apply cmra_included_l. } intros n [[a1| |] b1] [[a2| |] b2]; naive_solver eauto using cmra_valid_op_l, cmra_valid_includedN. * by intros n ??; rewrite auth_includedN; intros [??]; split; simpl; apply cmra_op_minus. Qed. Definition auth_cmra_extend_mixin : CMRAExtendMixin (auth A). Proof. intros n x y1 y2 ? [??]; simpl in *. destruct (cmra_extend_op n (authoritative x) (authoritative y1) (authoritative y2)) as (z1&?&?&?); auto using authoritative_validN. destruct (cmra_extend_op n (own x) (own y1) (own y2)) as (z2&?&?&?); auto using own_validN. by exists (Auth (z1.1) (z2.1), Auth (z1.2) (z2.2)). Qed. Canonical Structure authRA : cmraT := CMRAT auth_cofe_mixin auth_cmra_mixin auth_cmra_extend_mixin. Instance auth_ra_empty `{Empty A} : RAIdentity A → RAIdentity (auth A). Proof. split; simpl; [apply ra_empty_valid|]. by intros x; constructor; simpl; rewrite (left_id _ _). Qed. Lemma auth_frag_op (a b : A) : ◯ (a ⋅ b) ≡ ◯ a ⋅ ◯ b. Proof. done. Qed. Lemma auth_includedN' n (x y : authC A) : x ≼{n} y ↔ authoritative x ≼{n} authoritative y ∧ own x ≼{n} own y. Proof. split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto. Qed. End cmra. Arguments authRA : clear implicits. (* Functor *) Instance auth_fmap : FMap auth := λ A B f x, Auth (f <$> authoritative x) (f (own x)). Instance auth_fmap_cmra_ne {A B : cmraT} n : Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap auth _ A B). Proof. intros f g Hf [??] [??] [??]; split; [by apply excl_fmap_cmra_ne|by apply Hf]. Qed. Instance auth_fmap_cmra_monotone {A B : cmraT} (f : A → B) : (∀ n, Proper (dist n ==> dist n) f) → CMRAMonotone f → CMRAMonotone (fmap f : auth A → auth B). Proof. split. * by intros n [x a] [y b]; rewrite !auth_includedN /=; intros [??]; split; simpl; apply: includedN_preserving. * intros n [[a| |] b]; rewrite /= /cmra_validN; naive_solver eauto using @includedN_preserving, @validN_preserving. Qed. Definition authRA_map {A B : cmraT} (f : A -n> B) : authRA A -n> authRA B := CofeMor (fmap f : authRA A → authRA B). Lemma authRA_map_ne A B n : Proper (dist n ==> dist n) (@authRA_map A B). Proof. intros f f' Hf [[a| |] b]; repeat constructor; apply Hf. Qed.