Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
RT-PROOFS
PROSA - Formally Proven Schedulability Analysis
Commits
6dd29bd5
Commit
6dd29bd5
authored
Mar 22, 2022
by
Sergey Bozhko
👀
Browse files
[WIP] close one more lemma
parent
d1601793
Pipeline
#63690
failed with stages
in 21 minutes and 25 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
results/edf/rta/bounded_nps.v
View file @
6dd29bd5
...
...
@@ -201,42 +201,37 @@ Section RTAforEDFwithBoundedNonpreemptiveSegmentsWithArrivalCurves.
move
=>
j
ARR
TSK
POS
t1
t2
PREF
;
move
:
(
PREF
)
=>
[
_
[
_
[
_
/
andP
[
T
_
]]]].
move
:
H_sched_valid
=>
[
COARR
MBR
].
destruct
(
leqP
(
t2
-
t1
)
blocking_bound
)
as
[
NEQ
|
NEQ
].
{
apply
leq_trans
with
(
t2
-
t1
)
;
last
by
done
.
rewrite
/
cumulative_priority_inversion
/
is_priority_inversion
.
{
apply
leq_trans
with
(
t2
-
t1
)
;
last
by
done
.
rewrite
/
cumulative_priority_inversion
.
rewrite
-[
X
in
_
<=
X
]
addn0
-[
t2
-
t1
]
mul1n
-
iter_addn
-
big_const_nat
.
rewrite
leq_sum
//.
intros
t
_;
case
:
(
sched
t
)
;
last
by
done
.
by
intros
s
;
destruct
(
hep_job
s
j
).
by
rewrite
leq_sum
//
;
intros
t
_;
destruct
(
priority_inversion_dec
).
}
edestruct
@
preemption_time_exists
as
[
ppt
[
PPT
NEQ2
]]
;
rt_eauto
.
move
:
NEQ2
=>
/
andP
[
GE
LE
].
apply
leq_trans
with
(
cumulative_priority_inversion
sched
j
t1
ppt
)
;
apply
leq_trans
with
(
cumulative_priority_inversion
arr_seq
sched
j
t1
ppt
)
;
last
apply
leq_trans
with
(
ppt
-
t1
).
-
rewrite
/
cumulative_priority_inversion
/
is_priority_inversion
.
-
rewrite
/
cumulative_priority_inversion
.
rewrite
(@
big_cat_nat
_
_
_
ppt
)
//=
;
last
first
.
{
rewrite
ltn_subRL
in
NEQ
.
apply
leq_trans
with
(
t1
+
blocking_bound
)
;
last
by
apply
ltnW
.
apply
leq_trans
with
(
t1
+
max_length_of_priority_inversion
j
t1
)
;
first
by
done
.
by
rewrite
leq_add2l
;
eapply
priority_inversion_is_bounded_by_blocking
;
eauto
2
.
}
by
rewrite
leq_add2l
;
eapply
priority_inversion_is_bounded_by_blocking
;
eauto
2
;
apply
/
eqP
.
}
rewrite
-[
X
in
_
<=
X
]
addn0
leq_add2l
leqn0
.
rewrite
big_nat_cond
big1
//
;
move
=>
t
/
andP
[/
andP
[
GEt
LTt
]
_
].
case
SCHED
:
(
sched
t
)
=>
[
s
|
]
;
last
by
done
.
edestruct
@
not_quiet_implies_exists_scheduled_hp_job
with
(
K
:
=
ppt
-
t1
)
(
t
:
=
t
)
as
[
j_hp
[
ARRB
[
HP
SCHEDHP
]]]
;
rt_eauto
.
{
exists
ppt
;
split
.
by
done
.
by
rewrite
subnKC
//
;
apply
/
andP
;
split
.
}
{
by
exists
ppt
;
split
;
[
done
|
rewrite
subnKC
//
;
apply
/
andP
;
split
]
.
}
{
by
rewrite
subnKC
//
;
apply
/
andP
;
split
.
}
apply
/
eqP
;
rewrite
eqb0
Bool
.
negb_involutive
.
enough
(
EQ
:
s
=
j_hp
)
;
first
by
subst
.
move
:
SCHED
=>
/
eqP
SCHED
;
rewrite
-
scheduled_at_def
in
SCHED
.
by
eapply
ideal_proc_model_is_a_uniprocessor_model
;
[
exact
SCHED
|
exact
SCHEDHP
].
-
rewrite
/
cumulative_priority_inversion
/
is_priority_inversion
.
apply
/
eqP
;
rewrite
eqb0
;
apply
/
negP
;
move
=>
/
priority_inversion_P
INV
.
feed_n
3
INV
;
rt_eauto
;
last
move
:
INV
=>
[
_
[
j_lp
/
andP
[
SCHED
PRIO
]]]
.
enough
(
EQ
:
j_lp
=
j_hp
)
;
first
by
subst
;
rewrite
HP
in
PRIO
.
by
eapply
ideal_proc_model_is_a_uniprocessor_model
;
rt_eauto
.
-
rewrite
/
cumulative_priority_inversion
.
rewrite
-[
X
in
_
<=
X
]
addn0
-[
ppt
-
t1
]
mul1n
-
iter_addn
-
big_const_nat
.
rewrite
leq_sum
//.
intros
t
_;
case
:
(
sched
t
)
;
last
by
done
.
by
intros
s
;
destruct
(
hep_job
s
j
).
-
rewrite
leq_subLR
.
apply
leq_trans
with
(
t1
+
max_length_of_priority_inversion
j
t1
)
;
first
by
done
.
by
rewrite
leq_add2l
;
eapply
priority_inversion_is_bounded_by_blocking
;
eauto
2
.
by
rewrite
leq_sum
//
;
intros
t
_;
destruct
(
priority_inversion_dec
).
-
rewrite
leq_subLR
.
apply
leq_trans
with
(
t1
+
max_length_of_priority_inversion
j
t1
)
;
first
by
done
.
by
rewrite
leq_add2l
;
eapply
priority_inversion_is_bounded_by_blocking
;
eauto
2
;
apply
/
eqP
.
Qed
.
End
PriorityInversionIsBounded
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment