Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Adam
Iris
Commits
b0601273
Commit
b0601273
authored
Jun 15, 2021
by
Robbert Krebbers
Browse files
Bump stdpp.
parent
c93646f0
Changes
2
Hide whitespace changes
Inline
Side-by-side
iris/algebra/cmra.v
View file @
b0601273
...
...
@@ -341,13 +341,13 @@ Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.
(** ** Core *)
Lemma
cmra_pcore_l'
x
cx
:
pcore
x
≡
Some
cx
→
cx
⋅
x
≡
x
.
Proof
.
intros
(
cx'
&?&-
>
)%
equiv_Some
_inv_r'
.
by
apply
cmra_pcore_l
.
Qed
.
Proof
.
intros
(
cx'
&?&
<
-)%
equiv_Some
.
by
apply
cmra_pcore_l
.
Qed
.
Lemma
cmra_pcore_r
x
cx
:
pcore
x
=
Some
cx
→
x
⋅
cx
≡
x
.
Proof
.
intros
.
rewrite
comm
.
by
apply
cmra_pcore_l
.
Qed
.
Lemma
cmra_pcore_r'
x
cx
:
pcore
x
≡
Some
cx
→
x
⋅
cx
≡
x
.
Proof
.
intros
(
cx'
&?&-
>
)%
equiv_Some
_inv_r'
.
by
apply
cmra_pcore_r
.
Qed
.
Proof
.
intros
(
cx'
&?&
<
-)%
equiv_Some
.
by
apply
cmra_pcore_r
.
Qed
.
Lemma
cmra_pcore_idemp'
x
cx
:
pcore
x
≡
Some
cx
→
pcore
cx
≡
Some
cx
.
Proof
.
intros
(
cx'
&?&-
>
)%
equiv_Some
_inv_r'
.
eauto
using
cmra_pcore_idemp
.
Qed
.
Proof
.
intros
(
cx'
&?&
<
-)%
equiv_Some
.
eauto
using
cmra_pcore_idemp
.
Qed
.
Lemma
cmra_pcore_dup
x
cx
:
pcore
x
=
Some
cx
→
cx
≡
cx
⋅
cx
.
Proof
.
intros
;
symmetry
;
eauto
using
cmra_pcore_r'
,
cmra_pcore_idemp
.
Qed
.
Lemma
cmra_pcore_dup'
x
cx
:
pcore
x
≡
Some
cx
→
cx
≡
cx
⋅
cx
.
...
...
@@ -412,9 +412,9 @@ Proof. rewrite (comm op); apply cmra_included_l. Qed.
Lemma
cmra_pcore_mono'
x
y
cx
:
x
≼
y
→
pcore
x
≡
Some
cx
→
∃
cy
,
pcore
y
=
Some
cy
∧
cx
≼
cy
.
Proof
.
intros
?
(
cx'
&?&
Hcx
)%
equiv_Some
_inv_r'
.
intros
?
(
cx'
&?&
Hcx
)%
equiv_Some
.
destruct
(
cmra_pcore_mono
x
y
cx'
)
as
(
cy
&->&?)
;
auto
.
exists
cy
;
by
rewrite
Hcx
.
exists
cy
;
by
rewrite
-
Hcx
.
Qed
.
Lemma
cmra_pcore_monoN'
n
x
y
cx
:
x
≼
{
n
}
y
→
pcore
x
≡
{
n
}
≡
Some
cx
→
∃
cy
,
pcore
y
=
Some
cy
∧
cx
≼
{
n
}
cy
.
...
...
@@ -1126,7 +1126,7 @@ Section prod.
Lemma
prod_pcore_Some'
(
x
cx
:
A
*
B
)
:
pcore
x
≡
Some
cx
↔
pcore
(
x
.
1
)
≡
Some
(
cx
.
1
)
∧
pcore
(
x
.
2
)
≡
Some
(
cx
.
2
).
Proof
.
split
;
[
by
intros
(
cx'
&[->
->]%
prod_pcore_Some
&-
>
)%
equiv_Some
_inv_r'
|].
split
;
[
by
intros
(
cx'
&[->
->]%
prod_pcore_Some
&
<
-)%
equiv_Some
|].
rewrite
{
3
}/
pcore
/
prod_pcore_instance
.
(* TODO: use setoid rewrite *)
intros
[
Hx1
Hx2
]
;
inversion_clear
Hx1
;
simpl
;
inversion_clear
Hx2
.
by
constructor
.
...
...
iris/algebra/gmap.v
View file @
b0601273
...
...
@@ -299,7 +299,7 @@ Proof. apply omap_singleton_Some. Qed.
Lemma
singleton_core'
(
i
:
K
)
(
x
:
A
)
cx
:
pcore
x
≡
Some
cx
→
core
{[
i
:
=
x
]}
≡
@{
gmap
K
A
}
{[
i
:
=
cx
]}.
Proof
.
intros
(
cx'
&?&-
>
)%
equiv_Some
_inv_r'
.
by
rewrite
(
singleton_core
_
_
cx'
).
intros
(
cx'
&?&
<
-)%
equiv_Some
.
by
rewrite
(
singleton_core
_
_
cx'
).
Qed
.
Lemma
singleton_core_total
`
{!
CmraTotal
A
}
(
i
:
K
)
(
x
:
A
)
:
core
{[
i
:
=
x
]}
=@{
gmap
K
A
}
{[
i
:
=
core
x
]}.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment