Commit b0601273 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Bump stdpp.

parent c93646f0
......@@ -341,13 +341,13 @@ Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.
(** ** Core *)
Lemma cmra_pcore_l' x cx : pcore x Some cx cx x x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Proof. intros (cx'&?&<-)%equiv_Some. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx x cx x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r' x cx : pcore x Some cx x cx x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Proof. intros (cx'&?&<-)%equiv_Some. by apply cmra_pcore_r. Qed.
Lemma cmra_pcore_idemp' x cx : pcore x Some cx pcore cx Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
Proof. intros (cx'&?&<-)%equiv_Some. eauto using cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup x cx : pcore x = Some cx cx cx cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x Some cx cx cx cx.
......@@ -412,9 +412,9 @@ Proof. rewrite (comm op); apply cmra_included_l. Qed.
Lemma cmra_pcore_mono' x y cx :
x y pcore x Some cx cy, pcore y = Some cy cx cy.
Proof.
intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
intros ? (cx'&?&Hcx)%equiv_Some.
destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
exists cy; by rewrite Hcx.
exists cy; by rewrite -Hcx.
Qed.
Lemma cmra_pcore_monoN' n x y cx :
x {n} y pcore x {n} Some cx cy, pcore y = Some cy cx {n} cy.
......@@ -1126,7 +1126,7 @@ Section prod.
Lemma prod_pcore_Some' (x cx : A * B) :
pcore x Some cx pcore (x.1) Some (cx.1) pcore (x.2) Some (cx.2).
Proof.
split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|].
split; [by intros (cx'&[-> ->]%prod_pcore_Some&<-)%equiv_Some|].
rewrite {3}/pcore /prod_pcore_instance. (* TODO: use setoid rewrite *)
intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2.
by constructor.
......
......@@ -299,7 +299,7 @@ Proof. apply omap_singleton_Some. Qed.
Lemma singleton_core' (i : K) (x : A) cx :
pcore x Some cx core {[ i := x ]} @{gmap K A} {[ i := cx ]}.
Proof.
intros (cx'&?&->)%equiv_Some_inv_r'. by rewrite (singleton_core _ _ cx').
intros (cx'&?&<-)%equiv_Some. by rewrite (singleton_core _ _ cx').
Qed.
Lemma singleton_core_total `{!CmraTotal A} (i : K) (x : A) :
core {[ i := x ]} =@{gmap K A} {[ i := core x ]}.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment