Commit abe3058e by Andrew Hirsch

### Moving to functional choreographies.

parent 37855c7e
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
 ... ... @@ -9,26 +9,26 @@ Module SoundlyTypedChoreography (E : Expression) (TE : TypedExpression E) (STE : Include (TypedChoreography L E TE). Theorem Preservation : forall (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> L.t * ExprTyp) (C : Chor) (τ : ExprTyp) (p : L.t), Γ;; Δ ⊢c C ::: τ @ p -> forall (R : Redex) (B : list L.t) (C': Chor), RChorStep R B C C' -> Γ;; Δ ⊢c C' ::: τ @ p. forall (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> ChorTyp) (C : Chor) (τ : ChorTyp), Γ;; Δ ⊢c C ::: τ -> forall (R : Redex) (B : list L.t) (C': Chor), RChorStep R B C C' -> Γ;; Δ ⊢c C' ::: τ. Proof. apply RelativePreservation. intros Γ e τ H e' H0. apply ExprPreservation with (e1 := e); auto. Qed. Theorem CompletePreservation: forall (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> L.t * ExprTyp) (C : Chor) (τ : ExprTyp) (p : L.t), Γ;; Δ ⊢c C ::: τ @ p -> forall (R : Redex) (B : list L.t) (C': Chor), CompleteRChorStep R B C C' -> Γ;; Δ ⊢c C' ::: τ @ p. forall (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> ChorTyp) (C : Chor) (τ : ChorTyp), Γ;; Δ ⊢c C ::: τ -> forall (R : Redex) (B : list L.t) (C': Chor), CompleteRChorStep R B C C' -> Γ;; Δ ⊢c C' ::: τ. Proof. apply CompleteRelativePreservation. intros Γ e τ H e' H0. apply ExprPreservation with (e1 := e); auto. Qed. Theorem Progress : forall (C : Chor) (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> L.t * ExprTyp) (τ : ExprTyp) (p : L.t), ChorClosed C -> Γ;; Δ ⊢c C ::: τ @ p -> forall (C : Chor) (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> ChorTyp) (τ : ChorTyp), ChorClosed C -> Γ;; Δ ⊢c C ::: τ -> ChorVal C \/ exists R C', RChorStep R nil C C'. Proof. apply RelativeProgress; auto. ... ... @@ -37,8 +37,8 @@ Module SoundlyTypedChoreography (E : Expression) (TE : TypedExpression E) (STE : Qed. Theorem CompleteProgress : forall (C : Chor) (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> L.t * ExprTyp) (τ : ExprTyp) (p : L.t), ChorClosed C -> Γ;; Δ ⊢c C ::: τ @ p -> forall (C : Chor) (Γ : L.t -> nat -> ExprTyp) (Δ : nat -> ChorTyp) (τ : ChorTyp), ChorClosed C -> Γ;; Δ ⊢c C ::: τ -> ChorVal C \/ exists R C', CompleteRChorStep R nil C C'. Proof. apply CompleteRelativeProgress; auto. ... ...
This diff is collapsed.
 ... ... @@ -11,6 +11,3 @@ FunLMap.v Choreography.v TypedChoreography.v SoundlyTypedChoreography.v ProcessCalculus.v InternalProcesses.v ChoreographyCompiler.v
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment