diff --git a/theories/gmultiset.v b/theories/gmultiset.v index 15c9b648d1cf1cb69934ce20775106095b5ffde5..f7040a817415b5593b527d9f23d036d259523190 100644 --- a/theories/gmultiset.v +++ b/theories/gmultiset.v @@ -45,7 +45,7 @@ Section definitions. Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X, let (X) := X in dom _ X. -End definitions. +End definitions. Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq. Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty. @@ -66,6 +66,8 @@ Proof. Qed. Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A). Proof. intros X Y. by rewrite gmultiset_eq. Qed. +Global Instance gmultiset_equivalence : Equivalence (≡@{gmultiset A}). +Proof. constructor; repeat intro; naive_solver. Qed. (* Multiplicity *) Lemma multiplicity_empty x : multiplicity x ∅ = 0.