diff --git a/theories/numbers.v b/theories/numbers.v index 7b549e6765fbd55f8968bbebf532b498d38c3eb5..f577584944a857ee2a9c3e8f0658e90a89796b97 100644 --- a/theories/numbers.v +++ b/theories/numbers.v @@ -17,6 +17,8 @@ Proof. solve_decision. Defined. Arguments minus !_ !_ / : assert. Arguments Nat.max : simpl nomatch. +Typeclasses Opaque lt. + Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level). Reserved Notation "x ≤ y < z" (at level 70, y at next level). Reserved Notation "x < y < z" (at level 70, y at next level). @@ -59,7 +61,7 @@ Proof. by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux. Qed. Instance nat_lt_pi: ∀ x y : nat, ProofIrrel (x < y). -Proof. apply _. Qed. +Proof. unfold lt. apply _. Qed. Lemma nat_le_sum (x y : nat) : x ≤ y ↔ ∃ z, y = x + z. Proof. split. exists (y - x); lia. intros [z ->]; lia. Qed. @@ -122,6 +124,9 @@ Notation max_list := (max_list_with id). (** * Notations and properties of [positive] *) Open Scope positive_scope. +Typeclasses Opaque Pos.le. +Typeclasses Opaque Pos.lt. + Infix "≤" := Pos.le : positive_scope. Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : positive_scope. Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : positive_scope. @@ -282,6 +287,9 @@ Qed. Close Scope positive_scope. (** * Notations and properties of [N] *) +Typeclasses Opaque N.le. +Typeclasses Opaque N.lt. + Infix "≤" := N.le : N_scope. Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%N : N_scope. Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%N : N_scope. @@ -305,6 +313,9 @@ Program Instance N_lt_dec : RelDecision N.lt := λ x y, match N.compare x y with Lt => left _ | _ => right _ end. Solve Obligations with naive_solver. Instance N_inhabited: Inhabited N := populate 1%N. +Instance N_lt_pi x y : ProofIrrel (x < y)%N. +Proof. unfold N.lt. apply _. Qed. + Instance N_le_po: PartialOrder (≤)%N. Proof. repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm. @@ -314,6 +325,9 @@ Hint Extern 0 (_ ≤ _)%N => reflexivity : core. (** * Notations and properties of [Z] *) Open Scope Z_scope. +Typeclasses Opaque Z.le. +Typeclasses Opaque Z.lt. + Infix "≤" := Z.le : Z_scope. Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Z_scope. Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Z_scope. @@ -342,6 +356,9 @@ Instance Z_eq_dec: EqDecision Z := Z.eq_dec. Instance Z_le_dec: RelDecision Z.le := Z_le_dec. Instance Z_lt_dec: RelDecision Z.lt := Z_lt_dec. Instance Z_inhabited: Inhabited Z := populate 1. +Instance Z_lt_pi x y : ProofIrrel (x < y). +Proof. unfold Z.lt. apply _. Qed. + Instance Z_le_po : PartialOrder (≤). Proof. repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm. @@ -446,6 +463,9 @@ Instance Z_of_N_inj: Inj (=) (=) Z.of_N := N2Z.inj. (* Add others here. *) (** * Notations and properties of [Qc] *) +Typeclasses Opaque Qcle. +Typeclasses Opaque Qclt. + Open Scope Qc_scope. Delimit Scope Qc_scope with Qc. Notation "1" := (Q2Qc 1) : Qc_scope. @@ -473,6 +493,8 @@ Program Instance Qc_lt_dec: RelDecision Qclt := λ x y, if Qclt_le_dec x y then left _ else right _. Next Obligation. done. Qed. Next Obligation. intros x y; apply Qcle_not_lt. Qed. +Instance Qc_lt_pi x y : ProofIrrel (x < y). +Proof. unfold Qclt. apply _. Qed. Instance: PartialOrder (≤). Proof.