From 020b6398c4c69c4a33c24f2826c9df52c102513d Mon Sep 17 00:00:00 2001 From: Siva <sivar.b@huawei.com> Date: Thu, 11 Oct 2018 10:26:02 +0530 Subject: [PATCH] [RELAY][OP] conv2d_transpose (#1862) --- docs/langref/relay_op.rst | 2 + include/tvm/relay/attrs/nn.h | 51 +++++++++ python/tvm/relay/op/nn/nn.py | 68 +++++++++++- src/relay/op/nn/convolution.cc | 148 +++++++++++++++++++++++++++ tests/python/relay/test_op_level2.py | 37 +++++++ 5 files changed, 304 insertions(+), 2 deletions(-) diff --git a/docs/langref/relay_op.rst b/docs/langref/relay_op.rst index 97f2d4cb9..fe5356557 100644 --- a/docs/langref/relay_op.rst +++ b/docs/langref/relay_op.rst @@ -48,6 +48,7 @@ This level enables typical convnet models. :nosignatures: tvm.relay.nn.conv2d + tvm.relay.nn.conv2d_transpose tvm.relay.nn.max_pool2d tvm.relay.nn.avg_pool2d tvm.relay.nn.global_max_pool2d @@ -129,6 +130,7 @@ Level 1 Definitions Level 2 Definitions ------------------- .. autofunction:: tvm.relay.nn.conv2d +.. autofunction:: tvm.relay.nn.conv2d_transpose .. autofunction:: tvm.relay.nn.max_pool2d .. autofunction:: tvm.relay.nn.avg_pool2d .. autofunction:: tvm.relay.nn.global_max_pool2d diff --git a/include/tvm/relay/attrs/nn.h b/include/tvm/relay/attrs/nn.h index ce80407f1..7eb7a8360 100644 --- a/include/tvm/relay/attrs/nn.h +++ b/include/tvm/relay/attrs/nn.h @@ -77,6 +77,57 @@ struct SoftmaxAttrs : public tvm::AttrsNode<SoftmaxAttrs> { } }; +/*! \brief Attributes used in transposed convolution operator */ +struct Conv2DTransposeAttrs : public tvm::AttrsNode<Conv2DTransposeAttrs> { + IndexExpr channels; + Array<IndexExpr> kernel_size; + Array<IndexExpr> strides; + Array<IndexExpr> padding; + Array<IndexExpr> output_padding; + Array<IndexExpr> dilation; + int groups; + std::string data_layout; + std::string weight_layout; + DataType out_dtype; + + TVM_DECLARE_ATTRS(Conv2DTransposeAttrs, "relay.attrs.Conv2DTransposeAttrs") { + TVM_ATTR_FIELD(channels) + .set_default(NullValue<IndexExpr>()) + .describe("The dimensionality of the output space" + "i.e. the number of output channels in the convolution."); + TVM_ATTR_FIELD(kernel_size) + .describe("The dimensions of the convolution window.") + .set_default(NullValue<Array<IndexExpr> >()); + TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1})) + .describe("The strides of the convolution."); + TVM_ATTR_FIELD(output_padding).set_default(Array<IndexExpr>({0, 0})) + .describe("Zero-padding added to one side of the output."); + TVM_ATTR_FIELD(padding).set_default(Array<IndexExpr>({0, 0})) + .describe("If padding is non-zero, then the input is implicitly zero-padded" + "on both sides for padding number of points"); + TVM_ATTR_FIELD(dilation).set_default(Array<IndexExpr>({1, 1})) + .describe("Specifies the dilation rate to use for dilated convolution."); + TVM_ATTR_FIELD(groups).set_default(1) + .describe("Controls the connections between inputs and outputs." + "At groups=1, all inputs are convolved to all outputs." + "At groups=2, the operation becomes equivalent to having two convolution" + "layers side by side, each seeing half the input channels, and producing" + "half the output channels, and both subsequently concatenated."); + TVM_ATTR_FIELD(data_layout).set_default("NCHW") + .describe("Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." + "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" + "dimensions respectively. Convolution is applied on the 'H' and" + "'W' dimensions."); + TVM_ATTR_FIELD(weight_layout).set_default("OIHW") + .describe("Dimension ordering of data and weight. Can be 'OIHW', 'OIHW16o16i', etc." + "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" + "dimensions respectively."); + TVM_ATTR_FIELD(out_dtype) + .set_default(Int(0)) + .describe("Output data type, set to explicit type under mixed precision setting"); + } +}; + /*! \brief Attributes for max pool operator */ struct MaxPool2DAttrs : public tvm::AttrsNode<MaxPool2DAttrs> { Array<IndexExpr> pool_size; diff --git a/python/tvm/relay/op/nn/nn.py b/python/tvm/relay/op/nn/nn.py index 7985d57c9..52414df8e 100644 --- a/python/tvm/relay/op/nn/nn.py +++ b/python/tvm/relay/op/nn/nn.py @@ -88,6 +88,62 @@ def conv2d(data, weight_layout, out_layout, out_dtype) +def conv2d_transpose(data, + weight, + strides=(1, 1), + padding=(0, 0), + dilation=(1, 1), + groups=1, + channels=None, + kernel_size=None, + data_layout="NCHW", + weight_layout="OIHW", + output_padding=(0, 0), + out_dtype=""): + """Two dimensional trnasposed convolution operator. + + Parameters + ---------- + data : relay.Expr + The input data to the operator. + + weight : relay.Expr + The weight expressions. + + strides : Tuple[int], optional + The strides of convoltution. + + padding : Tuple[int], optional + The padding of convolution on both sides of inputs. + + dilation : Tuple[int], optional + Specifies the dilation rate to be used for dilated convolution. + + groups : int, optional + Number of groups for grouped convolution. + + data_layout : str, optional + Layout of the input. + + weight_layout : str, optional + Layout of the weight. + + output_padding : Tuple[int], optional + Additional zero-padding to be added to one side of the output. + + out_dtype : str, optional + Specifies the output data type for mixed precision conv2d. + + Returns + ------- + result : relay.Expr + The computed result. + """ + return _make.conv2d_transpose(data, weight, strides, padding, dilation, + groups, channels, kernel_size, data_layout, + weight_layout, output_padding, out_dtype) + + def softmax(data, axis): r"""Computes softmax. @@ -103,8 +159,12 @@ def softmax(data, axis): axis: int The axis to sum over when computing softmax - """ + Returns + ------- + result : relay.Expr + The computed result. + """ return _make.softmax(data, axis) @@ -125,8 +185,12 @@ def log_softmax(data, axis): axis: int The axis to sum over when computing softmax - """ + Returns + ------- + result : relay.Expr + The computed result. + """ return _make.log_softmax(data, axis) diff --git a/src/relay/op/nn/convolution.cc b/src/relay/op/nn/convolution.cc index ba4241286..4717e3fe0 100644 --- a/src/relay/op/nn/convolution.cc +++ b/src/relay/op/nn/convolution.cc @@ -154,5 +154,153 @@ with the layer input to produce a tensor of outputs. .set_support_level(2) .add_type_rel("Conv2D", Conv2DRel); + +// Conv2DTranspose +TVM_REGISTER_NODE_TYPE(Conv2DTransposeAttrs); + +bool Conv2DTransposeRel(const Array<Type>& types, + int num_inputs, + const Attrs& attrs, + const TypeReporter& reporter) { + CHECK_EQ(types.size(), 3); + const auto* data = types[0].as<TensorTypeNode>(); + const auto* weight = types[1].as<TensorTypeNode>(); + if (data == nullptr) return false; + + static const Layout kNCHW("NCHW"); + static const Layout kOIHW("OIHW"); + + const Conv2DTransposeAttrs* param = attrs.as<Conv2DTransposeAttrs>(); + CHECK(param != nullptr); + const Layout in_layout(param->data_layout); + const Layout kernel_layout(param->weight_layout); + CHECK(in_layout.convertible(kNCHW)) + << "Conv only support input layouts that are convertible from NCHW." + << " But got " << in_layout; + CHECK(kernel_layout.convertible(kOIHW)) + << "Conv only support kernel layouts that are convertible from OIHW." + << " But got "<< kernel_layout; + + IndexExpr channels, dilated_ksize_y, dilated_ksize_x; + const auto dshape_nchw = ConvertLayout(data->shape, in_layout, kNCHW); + // infer weight if the kernel_size and channels are defined + if (param->kernel_size.defined() && param->channels.defined()) { + CHECK_EQ(param->kernel_size.size(), 2); + CHECK_EQ(param->dilation.size(), 2); + + std::vector<IndexExpr> wshape({dshape_nchw[1], + param->channels / param->groups, + param->kernel_size[0], + param->kernel_size[1]}); + + wshape = ConvertLayout(wshape, kOIHW, kernel_layout); + dilated_ksize_y = 1 + (param->kernel_size[0] - 1) * param->dilation[0]; + dilated_ksize_x = 1 + (param->kernel_size[1] - 1) * param->dilation[1]; + channels = param->channels; + + // assign result to reporter + reporter->Assign(types[1], TensorTypeNode::make(wshape, data->dtype)); + } else { + // use weight to infer the conv shape. + if (weight == nullptr) return false; + auto wshape = ConvertLayout(weight->shape, kernel_layout, kOIHW); + if (param->kernel_size.defined()) { + CHECK_EQ(param->kernel_size.size(), 2); + // check the size + CHECK(reporter->AssertEQ(param->kernel_size[0], wshape[2]) && + reporter->AssertEQ(param->kernel_size[1], wshape[3])) + << "Conv2D: shape of weight is inconsistent with kernel_size, " + << " kernel_size=" << param->kernel_size + << " wshape=" << Array<IndexExpr>(wshape); + } + if (param->channels.defined()) { + CHECK(reporter->AssertEQ(param->channels, wshape[1])) + << "Conv2D: shape of weight is inconsistent with channels, " + << " channels=" << param->channels + << " wshape=" << Array<IndexExpr>(wshape); + } + CHECK(reporter->AssertEQ(dshape_nchw[1] / param->groups, wshape[0])); + channels = wshape[1]; + dilated_ksize_y = 1 + (wshape[2] - 1) * param->dilation[0]; + dilated_ksize_x = 1 + (wshape[3] - 1) * param->dilation[1]; + } + // dilation + std::vector<IndexExpr> oshape({dshape_nchw[0], channels, 0, 0}); + oshape[2] = (param->strides[0] * (dshape_nchw[2] - 1) + dilated_ksize_y - + 2 * param->padding[0] + param->output_padding[0]); + oshape[3] = (param->strides[1] * (dshape_nchw[3] - 1) + dilated_ksize_x - + 2 * param->padding[1] + param->output_padding[1]); + + DataType out_dtype = param->out_dtype; + if (out_dtype.bits() == 0) { + out_dtype = data->dtype; + } + oshape = ConvertLayout(oshape, kNCHW, in_layout); + reporter->Assign(types[2], TensorTypeNode::make(oshape, out_dtype)); + return true; +} + + +Expr MakeConv2DTranspose(Expr data, + Expr weight, + Array<IndexExpr> strides, + Array<IndexExpr> padding, + Array<IndexExpr> dilation, + int groups, + IndexExpr channels, + Array<IndexExpr> kernel_size, + std::string data_layout, + std::string weight_layout, + Array<IndexExpr> output_padding, + DataType out_dtype) { + auto attrs = make_node<Conv2DTransposeAttrs>(); + attrs->channels = channels; + attrs->kernel_size = kernel_size; + attrs->strides = std::move(strides); + attrs->padding = std::move(padding); + attrs->output_padding = std::move(output_padding); + attrs->dilation = std::move(dilation); + attrs->groups = groups; + attrs->data_layout = std::move(data_layout); + attrs->weight_layout = std::move(weight_layout); + attrs->out_dtype = std::move(out_dtype); + static const Op& op = Op::Get("nn.conv2d_transpose"); + return CallNode::make(op, {data, weight}, Attrs(attrs), {}); +} + + +TVM_REGISTER_API("relay.op.nn._make.conv2d_transpose") +.set_body([](const TVMArgs& args, TVMRetValue* rv) { + runtime::detail::unpack_call<Expr, 12>(MakeConv2DTranspose, args, rv); + }); + +RELAY_REGISTER_OP("nn.conv2d_transpose") +.describe(R"code(Transposed 2D convolution layer (sometimes called Deconvolution). + +The need for transposed convolutions generally arises +from the desire to use a transformation going in the opposite direction +of a normal convolution, i.e., from something that has the shape of the +output of some convolution to something that has the shape of its input +while maintaining a connectivity pattern that is compatible with +said convolution. + +- **data**: This depends on the `layout` parameter. Input is 4D array of shape + (batch_size, in_channels, height, width) if `layout` is `NCHW`. +- **weight**: (in_channels, channels, kernel_size[0], kernel_size[1]) +- **bias**: (channels,) +- **out**: This depends on the `layout` parameter. Output is 4D array of shape +v (batch_size, channels, out_height, out_width) if `layout` is `NCHW`. + + out_height and out_width are calculated as:: + out_height = (height-1)*strides[0]-2*padding[0]+kernel_size[0]+output_padding[0] + out_width = (width-1)*strides[1]-2*padding[1]+kernel_size[1]+output_padding[1] + +)code" TVM_ADD_FILELINE) +.set_num_inputs(2) +.add_argument("data", "Tensor", "The input tensor.") +.add_argument("weight", "Tensor", "The weight tensor.") +.set_support_level(2) +.add_type_rel("Conv2DTranspose", Conv2DTransposeRel); + } // namespace relay } // namespace tvm diff --git a/tests/python/relay/test_op_level2.py b/tests/python/relay/test_op_level2.py index b9599982a..1d6d00277 100644 --- a/tests/python/relay/test_op_level2.py +++ b/tests/python/relay/test_op_level2.py @@ -57,6 +57,42 @@ def test_conv2d_infer_type(): assert ftype.arg_types[1] == relay.ty.TensorType( (4, 8, 3, 3, 4, 4), "int8") +def test_conv2d_transpose_infer_type(): + # symbolic in batch dimension + ib = relay.ir_builder.IRBuilder() + n, c, h, w = tvm.var("n"), 10, 10, 12 + x = ib.param("x", relay.ty.TensorType((n, c, h, w), "float32")) + w = ib.param("w", relay.ty.IncompleteType()) + + with ib.function(x, w) as func: + ib.ret(relay.nn.conv2d_transpose(x.var, w.var, + kernel_size=(3, 3), + padding=(1, 1), + channels=15)) + ib.ret(func) + func = relay.ir_pass.infer_type(ib.env, func.to_func()) + ftype = func.checked_type + assert ftype.ret_type == relay.ty.TensorType( + (n, 15, 10, 12), "float32") + assert ftype.arg_types[1] == relay.ty.TensorType( + (10, 15, 3, 3), "float32") + + # infer by shape of w, mixed precision + ib = relay.ir_builder.IRBuilder() + n, c, h, w = tvm.var("n"), 10, 10, 12 + x = ib.param("x", relay.ty.TensorType((n, c, h, w), "float32")) + w = ib.param("w", relay.ty.TensorType((12, 11, 5, 5), "float32")) + with ib.function(x, w) as func: + ib.ret(relay.nn.conv2d_transpose(x.var, w.var, + output_padding=(1, 1), + channels=11, + data_layout="NHWC")) + ib.ret(func) + func = relay.ir_pass.infer_type(ib.env, func.to_func()) + ftype = func.checked_type + assert ftype.ret_type == relay.ty.TensorType( + (n, 15, 15, 11), "float32") + def test_upsampling_infer_type(): ib = relay.ir_builder.IRBuilder() n, c , h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w") @@ -166,3 +202,4 @@ if __name__ == "__main__": test_pool2d_infer_type() test_upsampling_infer_type() test_flatten_infer_type() + test_conv2d_transpose_infer_type() -- GitLab