From 7afe6ba84e73205265150c1b91aa332a4e9aab01 Mon Sep 17 00:00:00 2001 From: Lianmin Zheng <mercy_zheng@sjtu.edu.cn> Date: Thu, 23 Aug 2018 13:43:23 -0700 Subject: [PATCH] fix CO CI problem (#1641) --- tutorials/autotvm/tune_conv2d_cuda.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tutorials/autotvm/tune_conv2d_cuda.py b/tutorials/autotvm/tune_conv2d_cuda.py index 375d1a9b7..3ff26a050 100644 --- a/tutorials/autotvm/tune_conv2d_cuda.py +++ b/tutorials/autotvm/tune_conv2d_cuda.py @@ -64,7 +64,7 @@ from tvm import autotvm # @autotvm.template -def conv2d_no_batching(N, H, W, CI, CO, KH, KW, stride, padding): +def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding): assert N == 1, "Only consider batch_size = 1 in this template" data = tvm.placeholder((N, CI, H, W), name='data') @@ -206,8 +206,8 @@ func(a_tvm, w_tvm, c_tvm) np.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-2) -# Evaluate running time. Here we choose a large repeat number (200) to reduce the noise +# Evaluate running time. Here we choose a large repeat number (400) to reduce the noise # and the overhead of kernel launch. You can also use nvprof to validate the result. -evaluator = func.time_evaluator(func.entry_name, ctx, number=200) +evaluator = func.time_evaluator(func.entry_name, ctx, number=400) print('Time cost of this operator: %f' % evaluator(a_tvm, w_tvm, c_tvm).mean) -- GitLab