From 88662130dd0e4517fdd937252990d3391e5ba15a Mon Sep 17 00:00:00 2001 From: Tianqi Chen <tqchen@users.noreply.github.com> Date: Fri, 27 Oct 2017 00:50:55 -0700 Subject: [PATCH] [TOPI] Support ceil_mode in pooling (#593) --- topi/python/topi/nn/pooling.py | 13 ++++++++++++- topi/tests/python/test_topi_pooling.py | 26 ++++++++++++++++++++------ 2 files changed, 32 insertions(+), 7 deletions(-) diff --git a/topi/python/topi/nn/pooling.py b/topi/python/topi/nn/pooling.py index fe3f02331..955f72422 100644 --- a/topi/python/topi/nn/pooling.py +++ b/topi/python/topi/nn/pooling.py @@ -44,7 +44,7 @@ def global_pool(data, pool_type): raise ValueError("Pool type should be 'avg' or 'max'.") -def pool(data, kernel, stride, padding, pool_type): +def pool(data, kernel, stride, padding, pool_type, ceil_mode=False): """Perform pooling on the data Parameters @@ -64,6 +64,9 @@ def pool(data, kernel, stride, padding, pool_type): pool_type : str Pool type, 'max' or 'avg' + ceil_mode : bool + Whether to use ceil when caculate output size. + Returns ------- output : tvm.Tensor @@ -77,10 +80,18 @@ def pool(data, kernel, stride, padding, pool_type): pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (kernel_height, kernel_width)) + pad_before = [0, 0, pad_top, pad_left] pad_after = [0, 0, pad_down, pad_right] + + if ceil_mode: + # Additional padding to ensure we do ceil instead of floor when divide stride. + pad_down += stride_height -1 + pad_right += stride_width - 1 + out_height = util.simplify((height - kernel_height + pad_top + pad_down) // stride_height + 1) out_width = util.simplify((width - kernel_width + pad_left + pad_right) // stride_width + 1) + dheight = tvm.reduce_axis((0, kernel_height)) dwidth = tvm.reduce_axis((0, kernel_width)) diff --git a/topi/tests/python/test_topi_pooling.py b/topi/tests/python/test_topi_pooling.py index 86f724a71..08aade521 100644 --- a/topi/tests/python/test_topi_pooling.py +++ b/topi/tests/python/test_topi_pooling.py @@ -2,18 +2,30 @@ import numpy as np import tvm import topi +import math from topi.util import get_const_tuple -def verify_pool(n, ic, ih, kh, sh, padding, pool_type): +def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode): iw = ih kw = kh sw = sh ph, pw = padding A = tvm.placeholder((n, ic, ih, iw), name='A') - B = topi.nn.pool(A, kernel=[kh, kw], stride=[sh, sw], padding=padding, pool_type=pool_type) + B = topi.nn.pool(A, kernel=[kh, kw], stride=[sh, sw], padding=padding, + pool_type=pool_type, ceil_mode=ceil_mode) B = topi.nn.relu(B) dtype = A.dtype + bshape = get_const_tuple(B.shape) + ashape = get_const_tuple(A.shape) + if ceil_mode: + assert bshape[2] == int(math.ceil(float(ashape[2] - kh + ph * 2) / sh) + 1) + assert bshape[3] == int(math.ceil(float(ashape[3] - kw + pw * 2) / sw) + 1) + else: + assert bshape[2] == int(math.floor(float(ashape[2] - kh + ph * 2) / sh) + 1) + assert bshape[3] == int(math.floor(float(ashape[3] - kw + pw * 2) / sw) + 1) + + a_np = np.random.uniform(size=(n, ic, ih, iw)).astype(dtype) pad_np = np.zeros(shape=(n, ic, ih+2*ph, iw+2*pw)).astype(dtype) no_zero = (range(n), range(ic), (range(ph, ih+ph)), (range(pw, iw+pw))) @@ -49,10 +61,12 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type): check_device(device) def test_pool(): - verify_pool(1, 256, 32, 2, 2, [0, 0], 'avg') - verify_pool(1, 256, 31, 3, 3, [1, 1], 'avg') - verify_pool(1, 256, 32, 2, 2, [0, 0], 'max') - verify_pool(1, 256, 31, 3, 3, [1, 1], 'max') + verify_pool(1, 256, 32, 2, 2, [0, 0], 'avg', False) + verify_pool(1, 256, 31, 3, 3, [1, 2], 'avg', False) + verify_pool(1, 256, 32, 2, 2, [0, 0], 'max', False) + verify_pool(1, 256, 31, 3, 3, [2, 1], 'max', False) + verify_pool(1, 256, 31, 3, 3, [2, 1], 'max', True) + def verify_global_pool(n, c, h, w, pool_type): -- GitLab