diff --git a/python/tvm/relay/testing/__init__.py b/python/tvm/relay/testing/__init__.py index 43160d64549c95d72cec4088850797cbc4771e29..47a04b5319221d6fa5bf768495a0c12909cd7d1e 100644 --- a/python/tvm/relay/testing/__init__.py +++ b/python/tvm/relay/testing/__init__.py @@ -7,4 +7,7 @@ from . import dqn from . import dcgan from . import mobilenet from . import lstm +from . import inception_v3 +from . import squeezenet +from . import vgg from .config import ctx_list diff --git a/python/tvm/relay/testing/inception_v3.py b/python/tvm/relay/testing/inception_v3.py new file mode 100644 index 0000000000000000000000000000000000000000..96684c5d6e1d2a2a992aa28d42fba0ca268db55b --- /dev/null +++ b/python/tvm/relay/testing/inception_v3.py @@ -0,0 +1,284 @@ +""" +Inception V3, suitable for images with around 299 x 299 + +Reference: +Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision." +arXiv preprint arXiv:1512.00567 (2015). + +Adopted from https://github.com/apache/incubator-mxnet/blob/ + master/example/image-classification/symbols/inception-v3.py +""" +# pylint: disable=invalid-name,missing-docstring,unused-argument +from tvm import relay +from .init import create_workload +from . import layers + +def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''): + conv = layers.conv2d( + data=data, + channels=int(num_filter), + kernel_size=kernel, + strides=stride, + padding=pad, + name='%s%s_conv1' % (name, suffix)) + + bn = layers.batch_norm_infer(data=conv, epsilon=2e-5, name='%s%s_bn' % (name, suffix)) + act = relay.nn.relu(data=bn) + return act + +def Pooling(data, kernel, stride, pad, pool_type, name): + if pool_type == 'max': + return relay.nn.max_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad) + elif pool_type == 'avg': + return relay.nn.avg_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad, + count_include_pad=True) + else: + raise ValueError("Invalid pooling type: " + pool_type) + +def Inception7A(data, + num_1x1, + num_3x3_red, num_3x3_1, num_3x3_2, + num_5x5_red, num_5x5, + pool, proj, + name): + tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name)) + tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv') + tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name), + suffix='_conv_1') + tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv') + tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), + suffix='_conv_1') + tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name), + suffix='_conv_2') + pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, + name=('%s_pool_%s_pool' % (pool, name))) + + cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv') + concat = relay.concatenate((tower_1x1, tower_5x5, tower_3x3, cproj), axis=0) + return concat + +# First Downsample +def Inception7B(data, + num_3x3, + num_d3x3_red, num_d3x3_1, num_d3x3_2, + pool, + name): + tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), + name=('%s_conv' % name)) + tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv') + tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1), + name=('%s_tower' % name), suffix='_conv_1') + tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2), + name=('%s_tower' % name), suffix='_conv_2') + pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max", + name=('max_pool_%s_pool' % name)) + concat = relay.concatenate((tower_3x3, tower_d3x3, pooling), axis=0) + return concat + +def Inception7C(data, + num_1x1, + num_d7_red, num_d7_1, num_d7_2, + num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4, + pool, proj, + name): + tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) + tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv') + tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), + name=('%s_tower' % name), suffix='_conv_1') + tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), + name=('%s_tower' % name), suffix='_conv_2') + tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv') + tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0), + name=('%s_tower_1' % name), suffix='_conv_1') + tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3), + name=('%s_tower_1' % name), suffix='_conv_2') + tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0), + name=('%s_tower_1' % name), suffix='_conv_3') + tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3), + name=('%s_tower_1' % name), suffix='_conv_4') + pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, + name=('%s_pool_%s_pool' % (pool, name))) + cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), + name=('%s_tower_2' % name), suffix='_conv') + # concat + concat = relay.concatenate((tower_1x1, tower_d7, tower_q7, cproj), axis=0) + return concat + +def Inception7D(data, + num_3x3_red, num_3x3, + num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3, + pool, + name): + tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name), + suffix='_conv') + tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), + name=('%s_tower' % name), suffix='_conv_1') + tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name), + suffix='_conv') + tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), + name=('%s_tower_1' % name), suffix='_conv_1') + tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), + name=('%s_tower_1' % name), suffix='_conv_2') + tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2), + name=('%s_tower_1' % name), suffix='_conv_3') + pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, pad=(0, 0), + name=('%s_pool_%s_pool' % (pool, name))) + # concat + concat = relay.concatenate((tower_3x3, tower_d7_3x3, pooling), axis=0) + return concat + +def Inception7E(data, + num_1x1, + num_d3_red, num_d3_1, num_d3_2, + num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2, + pool, proj, + name): + tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name)) + tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv') + tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1), + name=('%s_tower' % name), suffix='_mixed_conv') + tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0), + name=('%s_tower' % name), suffix='_mixed_conv_1') + tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name), + suffix='_conv') + tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), + name=('%s_tower_1' % name), suffix='_conv_1') + tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1), + name=('%s_tower_1' % name), suffix='_mixed_conv') + tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0), + name=('%s_tower_1' % name), suffix='_mixed_conv_1') + pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, + name=('%s_pool_%s_pool' % (pool, name))) + cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name), + suffix='_conv') + # concat + concat = relay.concatenate( + (tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj), axis=0) + return concat + +def get_net(batch_size, + num_classes, + image_shape, + dtype): + """Get network a Inception v3 network. + + batch_size : int + The batch size used in the model + + num_classes : int, optional + Number of claseses + + image_shape : tuple, optional + The input image shape + + dtype : str, optional + The data type + + Returns + ------- + net : relay.Function + The dataflow. + """ + data_shape = (batch_size,) + image_shape + data = relay.var("data", + shape=data_shape, + dtype=dtype) + + # stage 1 + conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv") + conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1") + conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2") + pool = Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0), + name="pool") + # stage 2 + conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3") + conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4") + pool1 = Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0), + name="pool1") + + # stage 3 + in3a = Inception7A(pool1, 64, + 64, 96, 96, + 48, 64, + "avg", 32, "mixed") + + in3b = Inception7A(in3a, 64, + 64, 96, 96, + 48, 64, + "avg", 64, "mixed_1") + in3c = Inception7A(in3b, 64, + 64, 96, 96, + 48, 64, + "avg", 64, "mixed_2") + in3d = Inception7B(in3c, 384, + 64, 96, 96, + "max", "mixed_3") + # stage 4 + in4a = Inception7C(in3d, 192, + 128, 128, 192, + 128, 128, 128, 128, 192, + "avg", 192, "mixed_4") + in4b = Inception7C(in4a, 192, + 160, 160, 192, + 160, 160, 160, 160, 192, + "avg", 192, "mixed_5") + in4c = Inception7C(in4b, 192, + 160, 160, 192, + 160, 160, 160, 160, 192, + "avg", 192, "mixed_6") + in4d = Inception7C(in4c, 192, + 192, 192, 192, + 192, 192, 192, 192, 192, + "avg", 192, "mixed_7") + in4e = Inception7D(in4d, 192, 320, + 192, 192, 192, 192, + "max", "mixed_8") + # stage 5 + in5a = Inception7E(in4e, 320, + 384, 384, 384, + 448, 384, 384, 384, + "avg", 192, "mixed_9") + in5b = Inception7E(in5a, 320, + 384, 384, 384, + 448, 384, 384, 384, + "max", 192, "mixed_10") + + # pool + pool = Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", pad=(0, 0), + name="global_pool") + + flatten = relay.nn.batch_flatten(pool) + fc1 = relay.nn.dense(flatten, relay.var("fc1_weight"), units=num_classes) + fc1 = relay.nn.bias_add(fc1, relay.var("fc2_bias")) + inception_v3 = relay.nn.softmax(data=fc1) + args = relay.ir_pass.free_vars(inception_v3) + return relay.Function(args, inception_v3) + +def get_workload(batch_size=1, num_classes=1000, + image_shape=(3, 299, 299), dtype="float32"): + """Get benchmark workload for InceptionV3 + + Parameters + ---------- + batch_size : int + The batch size used in the model + + num_classes : int, optional + Number of classes + + image_shape : tuple, optional + The input image shape + + dtype : str, optional + The data type + + Returns + ------- + net : nnvm.Symbol + The computational graph + + params : dict of str to NDArray + The parameters. + """ + net = get_net(batch_size, num_classes, image_shape, dtype) + return create_workload(net) diff --git a/python/tvm/relay/testing/squeezenet.py b/python/tvm/relay/testing/squeezenet.py new file mode 100644 index 0000000000000000000000000000000000000000..fa55cafbf2b473cb88d1dbc46b8656e254ff6732 --- /dev/null +++ b/python/tvm/relay/testing/squeezenet.py @@ -0,0 +1,151 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +# coding: utf-8 +# pylint: disable=unused-argument + +""" +Symbol of SqueezeNet + +Reference: +Iandola, Forrest N., et al. +"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). +""" + +from tvm import relay +from .init import create_workload +from . import layers + +# Helpers +def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): + net = _make_fire_conv(net, squeeze_channels, 1, 0) + + left = _make_fire_conv(net, expand1x1_channels, 1, 0) + right = _make_fire_conv(net, expand3x3_channels, 3, 1) + # NOTE : Assume NCHW layout here + net = relay.concatenate((left, right), axis=1) + + return net + +def _make_fire_conv(net, channels, kernel_size, padding=0): + net = layers.conv2d(net, channels=channels, kernel_size=(kernel_size, kernel_size), + padding=(padding, padding), name="conv2d") + net = relay.nn.relu(net) + return net + +# Net +def get_net(batch_size, image_shape, num_classes, version, dtype): + """Get symbol of SqueezeNet + + Parameters + ---------- + batch_size : int + The batch size used in the model + + image_shape : tuple, optional + The input image shape + + num_classes: int + The number of classification results + + version : str, optional + "1.0" or "1.1" of SqueezeNet + """ + assert version in ['1.0', '1.1'], ("Unsupported SqueezeNet version {version}:" + "1.0 or 1.1 expected".format(version=version)) + data_shape = (batch_size,) + image_shape + net = relay.var("data", shape=data_shape, dtype=dtype) + if version == '1.0': + net = layers.conv2d(net, + channels=96, + kernel_size=(7, 7), + strides=(2, 2), + padding=(3, 3), + name="conv2d") + net = relay.nn.bias_add(net, relay.var("dense1_bias")) + net = relay.nn.relu(net) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 16, 64, 64) + net = _make_fire(net, 16, 64, 64) + net = _make_fire(net, 32, 128, 128) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 32, 128, 128) + net = _make_fire(net, 48, 192, 192) + net = _make_fire(net, 48, 192, 192) + net = _make_fire(net, 64, 256, 256) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 64, 256, 256) + else: + net = layers.conv2d(net, + channels=64, + kernel_size=(3, 3), + strides=(2, 2), + padding=(1, 1), + name="conv2d") + net = relay.nn.relu(net) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 16, 64, 64) + net = _make_fire(net, 16, 64, 64) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 32, 128, 128) + net = _make_fire(net, 32, 128, 128) + net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) + net = _make_fire(net, 48, 192, 192) + net = _make_fire(net, 48, 192, 192) + net = _make_fire(net, 64, 256, 256) + net = _make_fire(net, 64, 256, 256) + net = relay.nn.dropout(net, rate=0.5) + net = layers.conv2d(net, channels=num_classes, kernel_size=(1, 1), name="conv2d") + net = relay.nn.relu(net) + net = relay.nn.global_avg_pool2d(net) + net = relay.nn.batch_flatten(net) + net = relay.nn.softmax(net) + args = relay.ir_pass.free_vars(net) + return relay.Function(args, net) + +def get_workload(batch_size=1, num_classes=1000, version='1.0', + image_shape=(3, 224, 224), dtype="float32"): + """Get benchmark workload for SqueezeNet + + Parameters + ---------- + batch_size : int + The batch size used in the model + + num_classes : int, optional + Number of classes + + version : str, optional + "1.0" or "1.1" of SqueezeNet + + image_shape : tuple, optional + The input image shape + + dtype : str, optional + The data type + + Returns + ------- + net : nnvm.Symbol + The computational graph + + params : dict of str to NDArray + The parameters. + """ + + net = get_net(batch_size, image_shape, num_classes, version, dtype) + return create_workload(net) diff --git a/python/tvm/relay/testing/vgg.py b/python/tvm/relay/testing/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..7ec6669f6346e6db19a46683d7d5ba80c0ff863b --- /dev/null +++ b/python/tvm/relay/testing/vgg.py @@ -0,0 +1,117 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""References: + +Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for +large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). +""" +from tvm import relay +from .init import create_workload +from . import layers as wrapper + +def get_feature(internel_layer, layers, filters, batch_norm=False): + """Get VGG feature body as stacks of convoltions.""" + for i, num in enumerate(layers): + for j in range(num): + internel_layer = wrapper.conv2d( + data=internel_layer, kernel_size=(3, 3), padding=(1, 1), + channels=filters[i], name="conv%s_%s"%(i + 1, j + 1)) + if batch_norm: + internel_layer = wrapper.batch_norm_infer( + data=internel_layer, name="bn%s_%s" %(i + 1, j + 1)) + internel_layer = relay.nn.relu(data=internel_layer) + internel_layer = relay.nn.max_pool2d( + data=internel_layer, pool_size=(2, 2), strides=(2, 2)) + return internel_layer + +def get_classifier(input_data, num_classes): + """Get VGG classifier layers as fc layers.""" + flatten = relay.nn.batch_flatten(data=input_data) + fc6 = wrapper.dense_add_bias(data=flatten, units=4096, name="fc6") + relu6 = relay.nn.relu(data=fc6) + drop6 = relay.nn.dropout(data=relu6, rate=0.5) + fc7 = wrapper.dense_add_bias(data=drop6, units=4096, name="fc7") + relu7 = relay.nn.relu(data=fc7) + drop7 = relay.nn.dropout(data=relu7, rate=0.5) + fc8 = wrapper.dense_add_bias(data=drop7, units=num_classes, name="fc8") + return fc8 + +def get_net(batch_size, image_shape, num_classes, dtype, num_layers=11, batch_norm=False): + """ + Parameters + ---------- + batch_size : int + The batch size used in the model + + image_shape : tuple, optional + The input image shape + + num_classes : int, optional + Number of claseses + + dtype : str, optional + The data type + + num_layers : int + Number of layers for the variant of densenet. Options are 11, 13, 16, 19. + + batch_norm : bool, default False + Use batch normalization. + """ + vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]), + 13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]), + 16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]), + 19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])} + if num_layers not in vgg_spec: + raise ValueError("Invalide num_layers {}. Choices are 11,13,16,19.".format(num_layers)) + layers, filters = vgg_spec[num_layers] + data_shape = (batch_size,) + image_shape + data = relay.var("data", shape=data_shape, dtype=dtype) + feature = get_feature(data, layers, filters, batch_norm) + classifier = get_classifier(feature, num_classes) + symbol = relay.nn.softmax(data=classifier) + args = relay.ir_pass.free_vars(symbol) + return relay.Function(args, symbol) + +def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype="float32"): + """Get benchmark workload for VGG nets. + + Parameters + ---------- + batch_size : int + The batch size used in the model + + num_classes : int, optional + Number of claseses + + image_shape : tuple, optional + The input image shape + + dtype : str, optional + The data type + + Returns + ------- + net : nnvm.Symbol + The computational graph + + params : dict of str to NDArray + The parameters. + """ + net = get_net(batch_size, image_shape, num_classes, dtype) + return create_workload(net) diff --git a/tests/python/relay/test_ir_text_printer.py b/tests/python/relay/test_ir_text_printer.py index 30130fd7bcac7c7451012428069c6e0624f9f206..f6a1236c89e6b987e1d16891939f6495f858078d 100644 --- a/tests/python/relay/test_ir_text_printer.py +++ b/tests/python/relay/test_ir_text_printer.py @@ -124,6 +124,18 @@ def test_lstm(): net, params = tvm.relay.testing.lstm.get_workload(4, 4) net.astext() +def test_inception_v3(): + net, params = tvm.relay.testing.inception_v3.get_workload(batch_size=1) + net.astext() + +def test_squeezenet(): + for version in ['1.0', '1.1']: + net, params = tvm.relay.testing.squeezenet.get_workload(batch_size=1, version=version) + net.astext() + +def test_vgg(): + net, params = tvm.relay.testing.vgg.get_workload(batch_size=1) + net.astext() if __name__ == "__main__": do_print[0] = True @@ -132,6 +144,9 @@ if __name__ == "__main__": test_mlp() test_dqn() test_dcgan() + test_squeezenet() + test_inception_v3() + test_vgg() test_func() test_env() test_meta_data()