diff --git a/theories/utils/llist.v b/theories/utils/llist.v new file mode 100644 index 0000000000000000000000000000000000000000..51e2423230591d6f9fea090bd9b4751d6c495eb0 --- /dev/null +++ b/theories/utils/llist.v @@ -0,0 +1,213 @@ +From iris.heap_lang Require Export proofmode notation. +From iris.heap_lang Require Import assert. + +(** Immutable ML-style functional lists *) +Fixpoint llist `{heapG Σ} (l : loc) (vs : list val) : iProp Σ := + match vs with + | [] => l ↦ NONEV + | v :: vs => ∃ l' : loc, l ↦ SOMEV (v,#l') ∗ llist l' vs + end%I. +Arguments llist : simpl never. + +Definition lnil : val := λ: <>, ref NONE. +Definition lcons : val := λ: "x" "l", "l" <- SOME ("x", ref (!"l"));; "l". + +Definition lisnil : val := λ: "l", + match: !"l" with + SOME "p" => #false + | NONE => #true + end. + +Definition lhead : val := λ: "l", + match: !"l" with + SOME "p" => Fst "p" + | NONE => assert: #false + end. + +Definition lpop : val := λ: "l", + match: !"l" with + SOME "p" => "l" <- !(Snd "p");; Fst "p" + | NONE => assert: #false + end. + +Definition llookup : val := + rec: "go" "l" "n" := + if: "n" = #0 then lhead "l" else + match: !"l" with + SOME "p" => "go" (Snd "p") ("n" - #1) + | NONE => assert: #false + end. + +Definition llength : val := + rec: "go" "l" := + match: !"l" with + NONE => #0 + | SOME "p" => #1 + "go" (Snd "p") + end. + +Definition lapp : val := + rec: "go" "l" "k" := + match: !"l" with + NONE => "l" <- !"k" + | SOME "p" => "go" (Snd "p") "k" + end. +Definition lprep : val := λ: "l" "k", + lapp "k" "l";; "l" <- !"k". + +Definition lsnoc : val := + rec: "go" "l" "x" := + match: !"l" with + NONE => "l" <- SOME ("x", ref NONE) + | SOME "p" => "go" (Snd "p") "x" + end. + +Definition lsplit_at : val := + rec: "go" "l" "n" := + if: "n" ≤ #0 then let: "k" := ref (! "l") in "l" <- NONE;; "k" else + match: !"l" with + NONE => ref NONE + | SOME "p" => "go" (Snd "p") ("n" - #1) + end. + +Definition lsplit : val := λ: "l", lsplit_at "l" (llength "l" `quot` #2). + +Section lists. +Context `{heapG Σ}. +Implicit Types i : nat. +Implicit Types v : val. +Implicit Types vs : list val. +Local Arguments llist {_ _} _ !_ /. + +Lemma lnil_spec : + {{{ True }}} lnil #() {{{ l, RET #l; llist l [] }}}. +Proof. iIntros (Φ _) "HΦ". wp_lam. wp_alloc l. by iApply "HΦ". Qed. + +Lemma lcons_spec l v vs : + {{{ llist l vs }}} lcons v #l {{{ RET #l; llist l (v :: vs) }}}. +Proof. + iIntros (Φ) "Hll HΦ". wp_lam. destruct vs as [|v' vs]; simpl; wp_pures. + - wp_load. wp_alloc k. wp_store. iApply "HΦ"; eauto with iFrame. + - iDestruct "Hll" as (l') "[Hl Hll]". + wp_load. wp_alloc k. wp_store. iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lisnil_spec l vs: + {{{ llist l vs }}} + lisnil #l + {{{ RET #(if vs is [] then true else false); llist l vs }}}. +Proof. + iIntros (Φ) "Hll HΦ". wp_lam. destruct vs as [|v' vs]; simpl; wp_pures. + - wp_load; wp_pures. by iApply "HΦ". + - iDestruct "Hll" as (l') "[Hl Hll]". + wp_load; wp_pures. iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lhead_spec l v vs : + {{{ llist l (v :: vs) }}} lhead #l {{{ RET v; llist l (v :: vs) }}}. +Proof. + iIntros (Φ) "/=". iDestruct 1 as (l') "[Hl Hll]". iIntros "HΦ". + wp_lam. wp_load; wp_pures. iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lpop_spec l v vs : + {{{ llist l (v :: vs) }}} lpop #l {{{ RET v; llist l vs }}}. +Proof. + iIntros (Φ) "/=". iDestruct 1 as (l') "[Hl Hll]". iIntros "HΦ". + wp_lam. wp_load. wp_pures. destruct vs as [|v' vs]; simpl; wp_pures. + - wp_load. wp_store. wp_pures. iApply "HΦ"; eauto with iFrame. + - iDestruct "Hll" as (l'') "[Hl' Hll]". + wp_load. wp_store. wp_pures. iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma llookup_spec l i vs v : + vs !! i = Some v → + {{{ llist l vs }}} llookup #l #i {{{ RET v; llist l vs }}}. +Proof. + iIntros (Hi Φ) "Hll HΦ". + iInduction vs as [|v' vs] "IH" forall (l i v Hi Φ); [done|simpl; wp_rec; wp_pures]. + destruct i as [|i]; simplify_eq/=; wp_pures. + - wp_apply (lhead_spec with "Hll"); iIntros "Hll". by iApply "HΦ". + - iDestruct "Hll" as (l') "[Hl' Hll]". wp_load; wp_pures. + rewrite Nat2Z.inj_succ Z.sub_1_r Z.pred_succ. + wp_apply ("IH" with "[//] Hll"); iIntros "Hll". iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma llength_spec l vs : + {{{ llist l vs }}} llength #l {{{ RET #(length vs); llist l vs }}}. +Proof. + iIntros (Φ) "Hll HΦ". + iInduction vs as [|v vs] "IH" forall (l Φ); simpl; wp_rec; wp_pures. + - wp_load; wp_pures. by iApply "HΦ". + - iDestruct "Hll" as (l') "[Hl' Hll]". wp_load; wp_pures. + wp_apply ("IH" with "Hll"); iIntros "Hll". wp_pures. + rewrite (Nat2Z.inj_add 1). iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lapp_spec l1 l2 vs1 vs2 : + {{{ llist l1 vs1 ∗ llist l2 vs2 }}} + lapp #l1 #l2 + {{{ RET #(); llist l1 (vs1 ++ vs2) ∗ l2 ↦ - }}}. +Proof. + iIntros (Φ) "[Hll1 Hll2] HΦ". + iInduction vs1 as [|v1 vs1] "IH" forall (l1 Φ); simpl; wp_rec; wp_pures. + - wp_load. wp_pures. destruct vs2 as [|v2 vs2]; simpl; wp_pures. + + wp_load. wp_store. iApply "HΦ". eauto with iFrame. + + iDestruct "Hll2" as (l2') "[Hl2 Hll2]". wp_load. wp_store. + iApply "HΦ". iSplitR "Hl2"; eauto 10 with iFrame. + - iDestruct "Hll1" as (l') "[Hl1 Hll1]". wp_load; wp_pures. + wp_apply ("IH" with "Hll1 Hll2"); iIntros "[Hll Hl2]". + iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lprep_spec l1 l2 vs1 vs2 : + {{{ llist l1 vs2 ∗ llist l2 vs1 }}} + lprep #l1 #l2 + {{{ RET #(); llist l1 (vs1 ++ vs2) ∗ l2 ↦ - }}}. +Proof. + iIntros (Φ) "[Hll1 Hll2] HΦ". wp_lam. + wp_apply (lapp_spec with "[$Hll2 $Hll1]"); iIntros "[Hll2 Hl1]". + iDestruct "Hl1" as (w) "Hl1". destruct (vs1 ++ vs2) as [|v vs]; simpl; wp_pures. + - wp_load. wp_store. iApply "HΦ"; eauto with iFrame. + - iDestruct "Hll2" as (l') "[Hl2 Hll2]". wp_load. wp_store. + iApply "HΦ"; iSplitR "Hl2"; eauto with iFrame. +Qed. + +Lemma lsnoc_spec l vs v : + {{{ llist l vs }}} lsnoc #l v {{{ RET #(); llist l (vs ++ [v]) }}}. +Proof. + iIntros (Φ) "Hll HΦ". + iInduction vs as [|v' vs] "IH" forall (l Φ); simpl; wp_rec; wp_pures. + - wp_load. wp_alloc k. wp_store. iApply "HΦ"; eauto with iFrame. + - iDestruct "Hll" as (l') "[Hl Hll]". wp_load; wp_pures. + wp_apply ("IH" with "Hll"); iIntros "Hll". iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lsplit_at_spec l vs (n : nat) : + {{{ llist l vs }}} + lsplit_at #l #n + {{{ k, RET #k; llist l (take n vs) ∗ llist k (drop n vs) }}}. +Proof. + iIntros (Φ) "Hll HΦ". + iInduction vs as [|v vs] "IH" forall (l n Φ); simpl; wp_rec; wp_pures. + - destruct n as [|n]; simpl; wp_pures. + + wp_load. wp_alloc k. wp_store. iApply "HΦ"; iFrame. + + wp_load. wp_alloc k. iApply "HΦ"; iFrame. + - iDestruct "Hll" as (l') "[Hl Hll]". destruct n as [|n]; simpl; wp_pures. + + wp_load. wp_alloc k. wp_store. iApply "HΦ"; eauto with iFrame. + + wp_load; wp_pures. rewrite Nat2Z.inj_succ Z.sub_1_r Z.pred_succ. + wp_apply ("IH" with "[$]"); iIntros (k) "[Hll Hlk]". + iApply "HΦ"; eauto with iFrame. +Qed. + +Lemma lsplit_spec l vs : + {{{ llist l vs }}} + lsplit #l + {{{ k ws1 ws2, RET #k; ⌜ vs = ws1 ++ ws2 ⌠∗ llist l ws1 ∗ llist k ws2 }}}. +Proof. + iIntros (Φ) "Hl HΦ". wp_lam. + wp_apply (llength_spec with "Hl"); iIntros "Hl". wp_pures. + rewrite Z.quot_div_nonneg; [|lia..]. rewrite -(Z2Nat_inj_div _ 2). + wp_apply (lsplit_at_spec with "Hl"); iIntros (k) "[Hl Hk]". + iApply "HΦ". iFrame. by rewrite take_drop. +Qed. +End lists.