(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This files implements an efficient implementation of finite/cofinite sets of positive binary naturals [positive]. *) Require Export prelude.collections. Require Import prelude.pmap prelude.mapset. Local Open Scope positive_scope. (** * The tree data structure *) Inductive coPset_raw := | coPLeaf : bool → coPset_raw | coPNode : bool → coPset_raw → coPset_raw → coPset_raw. Instance coPset_raw_eq_dec (t1 t2 : coPset_raw) : Decision (t1 = t2). Proof. solve_decision. Defined. Fixpoint coPset_wf (t : coPset_raw) : bool := match t with | coPLeaf _ => true | coPNode true (coPLeaf true) (coPLeaf true) => false | coPNode false (coPLeaf false) (coPLeaf false) => false | coPNode b l r => coPset_wf l && coPset_wf r end. Arguments coPset_wf !_ / : simpl nomatch. Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l. Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed. Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r. Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed. Local Hint Immediate coPNode_wf_l coPNode_wf_r. Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw := match b, l, r with | true, coPLeaf true, coPLeaf true => coPLeaf true | false, coPLeaf false, coPLeaf false => coPLeaf false | _, _, _ => coPNode b l r end. Arguments coPNode' _ _ _ : simpl never. Lemma coPNode_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r). Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed. Hint Resolve coPNode_wf. Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool := match t, p with | coPLeaf b, _ => b | coPNode b l r, 1 => b | coPNode _ l _, p~0 => coPset_elem_of_raw p l | coPNode _ _ r, p~1 => coPset_elem_of_raw p r end. Local Notation e_of := coPset_elem_of_raw. Arguments coPset_elem_of_raw _ !_ / : simpl nomatch. Lemma coPset_elem_of_coPNode' b l r p : e_of p (coPNode' b l r) = e_of p (coPNode b l r). Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed. Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b. Proof. induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|]. assert (b' = b) by (apply (Ht 1)); subst. assert (l = coPLeaf b) as -> by (apply IHl; try apply (λ p, Ht (p~0)); eauto). assert (r = coPLeaf b) as -> by (apply IHr; try apply (λ p, Ht (p~1)); eauto). by destruct b. Qed. Lemma coPset_eq t1 t2 : (∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2. Proof. revert t2. induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in *. * f_equal; apply (Ht 1). * by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1). * by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2). * f_equal; [apply (Ht 1)| |]. + apply IHl; try apply (λ x, Ht (x~0)); eauto. + apply IHr; try apply (λ x, Ht (x~1)); eauto. Qed. Fixpoint coPset_singleton_raw (p : positive) : coPset_raw := match p with | 1 => coPNode true (coPLeaf false) (coPLeaf false) | p~0 => coPNode' false (coPset_singleton_raw p) (coPLeaf false) | p~1 => coPNode' false (coPLeaf false) (coPset_singleton_raw p) end. Instance coPset_union_raw : Union coPset_raw := fix go t1 t2 := let _ : Union _ := @go in match t1, t2 with | coPLeaf false, coPLeaf false => coPLeaf false | _, coPLeaf true => coPLeaf true | coPLeaf true, _ => coPLeaf true | coPNode b l r, coPLeaf false => coPNode' b l r | coPLeaf false, coPNode b l r => coPNode' b l r | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1 || b2) (l1 ∪ l2) (r1 ∪ r2) end. Local Arguments union _ _!_ !_ /. Instance coPset_intersection_raw : Intersection coPset_raw := fix go t1 t2 := let _ : Intersection _ := @go in match t1, t2 with | coPLeaf true, coPLeaf true => coPLeaf true | _, coPLeaf false => coPLeaf false | coPLeaf false, _ => coPLeaf false | coPNode b l r, coPLeaf true => coPNode' b l r | coPLeaf true, coPNode b l r => coPNode' b l r | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1 && b2) (l1 ∩ l2) (r1 ∩ r2) end. Local Arguments intersection _ _!_ !_ /. Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw := match t with | coPLeaf b => coPLeaf (negb b) | coPNode b l r => coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r) end. Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p). Proof. induction p; simpl; eauto. Qed. Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2). Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed. Lemma coPset_intersection_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2). Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed. Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t). Proof. induction t as [[]|[]]; simpl; eauto. Qed. Lemma elem_of_coPset_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q. Proof. split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_coPNode']. by revert q; induction p; intros [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; intros; f_equal'; auto. Qed. Lemma elem_of_coPset_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2. Proof. by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; simpl; rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r. Qed. Lemma elem_of_coPset_intersection t1 t2 p : e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2. Proof. by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; simpl; rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r. Qed. Lemma elem_of_coPset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t). Proof. by revert p; induction t as [[]|[]]; intros [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; simpl. Qed. (** * Packed together + set operations *) Definition coPset := { t | coPset_wf t }. Instance coPset_singleton : Singleton positive coPset := λ p, coPset_singleton_raw p ↾ coPset_singleton_wf _. Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X). Instance coPset_empty : Empty coPset := coPLeaf false ↾ I. Definition coPset_all : coPset := coPLeaf true ↾ I. Instance coPset_union : Union coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2. Instance coPset_intersection : Intersection coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∩ t2) ↾ coPset_intersection_wf _ _ Ht1 Ht2. Instance coPset_difference : Difference coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _). Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _. Instance coPset_collection : Collection positive coPset. Proof. split; [split| |]. * by intros ??. * intros p q. apply elem_of_coPset_singleton. * intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl. by rewrite elem_of_coPset_union, orb_True. * intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl. by rewrite elem_of_coPset_intersection, andb_True. * intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl. by rewrite elem_of_coPset_intersection, elem_of_coPset_opp, andb_True, negb_True. Qed. Instance coPset_leibniz : LeibnizEquiv coPset. Proof. intros X Y; split; [rewrite elem_of_equiv; intros HXY|by intros ->]. apply (sig_eq_pi _), coPset_eq; try apply proj2_sig. intros p; apply eq_bool_prop_intro, (HXY p). Qed. (** Infinite sets *) Fixpoint coPset_infinite_raw (t : coPset_raw) : bool := match t with | coPLeaf b => b | coPNode b l r => coPset_infinite_raw l || coPset_infinite_raw r end. Definition coPset_infinite (t : coPset) : bool := coPset_infinite_raw (`t). Lemma coPset_infinite_coPNode b l r : coPset_infinite_raw (coPNode' b l r) = coPset_infinite_raw (coPNode b l r). Proof. by destruct b, l as [[]|], r as [[]|]. Qed. (** Splitting of infinite sets *) Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw := match t with | coPLeaf false => coPLeaf false | coPLeaf true => coPNode true (coPLeaf true) (coPLeaf false) | coPNode b l r => coPNode' b (coPset_l_raw l) (coPset_l_raw r) end. Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw := match t with | coPLeaf false => coPLeaf false | coPLeaf true => coPNode false (coPLeaf false) (coPLeaf true) | coPNode b l r => coPNode' false (coPset_r_raw l) (coPset_r_raw r) end. Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t). Proof. induction t as [[]|]; simpl; auto. Qed. Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t). Proof. induction t as [[]|]; simpl; auto. Qed. Definition coPset_l (X : coPset) : coPset := let (t,Ht) := X in coPset_l_raw t ↾ coPset_l_wf _. Definition coPset_r (X : coPset) : coPset := let (t,Ht) := X in coPset_r_raw t ↾ coPset_r_wf _. Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅. Proof. apply elem_of_equiv_empty_L; intros p; apply Is_true_false. destruct X as [t Ht]; simpl; clear Ht; rewrite elem_of_coPset_intersection. revert p; induction t as [[]|[]]; intros [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; simpl; rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto. Qed. Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X. Proof. apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim. destruct X as [t Ht]; simpl; clear Ht; rewrite elem_of_coPset_union. revert p; induction t as [[]|[]]; intros [?|?|]; simpl; rewrite ?coPset_elem_of_coPNode'; simpl; rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto. Qed. Lemma coPset_l_infinite X : coPset_infinite X → coPset_infinite (coPset_l X). Proof. destruct X as [t Ht]; unfold coPset_infinite; simpl; clear Ht. induction t as [[]|]; simpl; rewrite ?coPset_infinite_coPNode; simpl; rewrite ?orb_True; tauto. Qed. Lemma coPset_r_infinite X : coPset_infinite X → coPset_infinite (coPset_r X). Proof. destruct X as [t Ht]; unfold coPset_infinite; simpl; clear Ht. induction t as [[]|]; simpl; rewrite ?coPset_infinite_coPNode; simpl; rewrite ?orb_True; tauto. Qed. (** Conversion from psets *) Fixpoint to_coPset_raw (t : Pmap_raw ()) : coPset_raw := match t with | PLeaf => coPLeaf false | PNode None l r => coPNode false (to_coPset_raw l) (to_coPset_raw r) | PNode (Some _) l r => coPNode true (to_coPset_raw l) (to_coPset_raw r) end. Lemma to_coPset_raw_wf t : Pmap_wf t → coPset_wf (to_coPset_raw t). Proof. induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto. * intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto. * destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r; rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition. Qed. Definition to_coPset (X : Pset) : coPset := let (m) := X in let (t,Ht) := m in to_coPset_raw t ↾ to_coPset_raw_wf _ Ht. Lemma elem_of_to_coPset X i : i ∈ to_coPset X ↔ i ∈ X. Proof. destruct X as [[t Ht]]; change (e_of i (to_coPset_raw t) ↔ t !! i = Some ()). clear Ht; revert i. induction t as [|[[]|] l IHl r IHr]; intros [i|i|]; simpl; auto; by split. Qed. Instance Pmap_dom_Pset {A} : Dom (Pmap A) coPset := λ m, to_coPset (dom _ m). Instance Pmap_dom_coPset: FinMapDom positive Pmap coPset. Proof. split; try apply _; intros A m i; unfold dom, Pmap_dom_Pset. by rewrite elem_of_to_coPset, elem_of_dom. Qed.