diff --git a/theories/coPset.v b/theories/coPset.v index 2d5e38d976c6d3261bf75e3587fcde134f75d98a..ba55791d10d63972928d0fa0cfe010747ecb6f95 100644 --- a/theories/coPset.v +++ b/theories/coPset.v @@ -159,7 +159,6 @@ Instance coPset_difference : Difference coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _). -Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _. Instance coPset_collection : Collection positive coPset. Proof. split; [split| |]. @@ -173,12 +172,28 @@ Proof. by rewrite elem_to_Pset_intersection, elem_to_Pset_opp, andb_True, negb_True. Qed. + Instance coPset_leibniz : LeibnizEquiv coPset. Proof. intros X Y; rewrite elem_of_equiv; intros HXY. apply (sig_eq_pi _), coPset_eq; try apply proj2_sig. intros p; apply eq_bool_prop_intro, (HXY p). Qed. + +Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _. +Instance coPset_equiv_dec (X Y : coPset) : Decision (X ≡ Y). +Proof. refine (cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined. +Instance mapset_disjoint_dec (X Y : coPset) : Decision (X ⊥ Y). +Proof. + refine (cast_if (decide (X ∩ Y = ∅))); + abstract (by rewrite disjoint_intersection_L). +Defined. +Instance mapset_subseteq_dec (X Y : coPset) : Decision (X ⊆ Y). +Proof. + refine (cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L). +Defined. + +(** * Top *) Lemma coPset_top_subseteq (X : coPset) : X ⊆ ⊤. Proof. done. Qed. Hint Resolve coPset_top_subseteq.