(* Copyright (c) 2012-2013, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file collects general purpose definitions and theorems on the option data type that are not in the Coq standard library. *) Require Export base tactics decidable. Inductive option_reflect {A} (P : A → Prop) (Q : Prop) : option A → Type := | ReflectSome x : P x → option_reflect P Q (Some x) | ReflectNone : Q → option_reflect P Q None. (** * General definitions and theorems *) (** Basic properties about equality. *) Lemma None_ne_Some {A} (a : A) : None ≠ Some a. Proof. congruence. Qed. Lemma Some_ne_None {A} (a : A) : Some a ≠ None. Proof. congruence. Qed. Lemma eq_None_ne_Some {A} (x : option A) a : x = None → x ≠ Some a. Proof. congruence. Qed. Instance Some_inj {A} : Injective (=) (=) (@Some A). Proof. congruence. Qed. (** The non dependent elimination principle on the option type. *) Definition default {A B} (b : B) (x : option A) (f : A → B) : B := match x with None => b | Some a => f a end. Hint Extern 1000 => simpl (default _ (Some _) _) || simpl (default _ None _). (** The [from_option] function allows us to get the value out of the option type by specifying a default value. *) Definition from_option {A} (a : A) (x : option A) : A := match x with None => a | Some b => b end. (** An alternative, but equivalent, definition of equality on the option data type. This theorem is useful to prove that two options are the same. *) Lemma option_eq {A} (x y : option A) : x = y ↔ ∀ a, x = Some a ↔ y = Some a. Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed. Definition is_Some {A} (x : option A) := ∃ y, x = Some y. Lemma mk_is_Some {A} (x : option A) y : x = Some y → is_Some x. Proof. intros; red; subst; eauto. Qed. Hint Resolve mk_is_Some. Lemma is_Some_None {A} : ¬is_Some (@None A). Proof. by destruct 1. Qed. Hint Resolve is_Some_None. Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x). Proof. set (P (y : option A) := match y with Some _ => True | _ => False end). set (f x := match x return P x → is_Some x with Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end). set (g x (H : is_Some x) := match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end). assert (∀ x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst). intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1. Qed. Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) := match x with | Some x => left (ex_intro _ x eq_refl) | None => right is_Some_None end. Definition is_Some_proj {A} {x : option A} : is_Some x → A := match x with Some a => λ _, a | None => False_rect _ ∘ is_Some_None end. Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } := match x return { a | x = Some a } + { x = None } with | Some a => inleft (a ↾ eq_refl _) | None => inright eq_refl end. Instance None_dec {A} (x : option A) : Decision (x = None) := match x with Some x => right (Some_ne_None x) | None => left eq_refl end. Lemma eq_None_not_Some {A} (x : option A) : x = None ↔ ¬is_Some x. Proof. destruct x; unfold is_Some; naive_solver. Qed. Lemma not_eq_None_Some `(x : option A) : x ≠ None ↔ is_Some x. Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed. (** Equality on [option] is decidable. *) Instance option_eq_None_dec {A} (x : option A) : Decision (x = None) := match x with Some _ => right (Some_ne_None _) | None => left eq_refl end. Instance option_None_eq_dec {A} (x : option A) : Decision (None = x) := match x with Some _ => right (None_ne_Some _) | None => left eq_refl end. Instance option_eq_dec `{dec : ∀ x y : A, Decision (x = y)} (x y : option A) : Decision (x = y). Proof. refine match x, y with | Some a, Some b => cast_if (decide (a = b)) | None, None => left _ | _, _ => right _ end; abstract congruence. Defined. (** * Monadic operations *) Instance option_ret: MRet option := @Some. Instance option_bind: MBind option := λ A B f x, match x with Some a => f a | None => None end. Instance option_join: MJoin option := λ A x, match x with Some x => x | None => None end. Instance option_fmap: FMap option := @option_map. Instance option_guard: MGuard option := λ P dec A x, match dec with left H => x H | _ => None end. Lemma fmap_is_Some {A B} (f : A → B) x : is_Some (f <$> x) ↔ is_Some x. Proof. unfold is_Some; destruct x; naive_solver. Qed. Lemma fmap_Some {A B} (f : A → B) x y : f <$> x = Some y ↔ ∃ x', x = Some x' ∧ y = f x'. Proof. destruct x; naive_solver. Qed. Lemma fmap_None {A B} (f : A → B) x : f <$> x = None ↔ x = None. Proof. by destruct x. Qed. Lemma option_fmap_id {A} (x : option A) : id <$> x = x. Proof. by destruct x. Qed. Lemma option_fmap_compose {A B} (f : A → B) {C} (g : B → C) x : g ∘ f <$> x = g <$> f <$> x. Proof. by destruct x. Qed. Lemma option_fmap_bind {A B C} (f : A → B) (g : B → option C) x : (f <$> x) ≫= g = x ≫= g ∘ f. Proof. by destruct x. Qed. Lemma option_bind_assoc {A B C} (f : A → option B) (g : B → option C) (x : option A) : (x ≫= f) ≫= g = x ≫= (mbind g ∘ f). Proof. by destruct x; simpl. Qed. Lemma option_bind_ext {A B} (f g : A → option B) x y : (∀ a, f a = g a) → x = y → x ≫= f = y ≫= g. Proof. intros. destruct x, y; simplify_equality; simpl; auto. Qed. Lemma option_bind_ext_fun {A B} (f g : A → option B) x : (∀ a, f a = g a) → x ≫= f = x ≫= g. Proof. intros. by apply option_bind_ext. Qed. Lemma bind_Some {A B} (f : A → option B) (x : option A) b : x ≫= f = Some b ↔ ∃ a, x = Some a ∧ f a = Some b. Proof. split. by destruct x as [a|]; [exists a|]. by intros (?&->&?). Qed. Lemma bind_None {A B} (f : A → option B) (x : option A) : x ≫= f = None ↔ x = None ∨ ∃ a, x = Some a ∧ f a = None. Proof. split; [|by intros [->|(?&->&?)]]. destruct x; intros; simplify_equality'; eauto. Qed. Lemma bind_with_Some {A} (x : option A) : x ≫= Some = x. Proof. by destruct x. Qed. Tactic Notation "case_option_guard" "as" ident(Hx) := match goal with | H : context C [@mguard option _ ?P ?dec _ ?x] |- _ => let X := context C [ match dec with left H => x H | _ => None end ] in change X in H; destruct_decide dec as Hx | |- context C [@mguard option _ ?P ?dec _ ?x] => let X := context C [ match dec with left H => x H | _ => None end ] in change X; destruct_decide dec as Hx end. Tactic Notation "case_option_guard" := let H := fresh in case_option_guard as H. Lemma option_guard_True {A} (P : Prop) `{Decision P} (x : option A) : P → guard P; x = x. Proof. intros. by case_option_guard. Qed. Lemma option_guard_False {A} (P : Prop) `{Decision P} (x : option A) : ¬P → guard P; x = None. Proof. intros. by case_option_guard. Qed. Tactic Notation "simplify_option_equality" "by" tactic3(tac) := let assert_Some_None A o H := first [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x; assert (o = Some x') as H by tac | assert (o = None) as H by tac ] in repeat match goal with | _ => progress simplify_equality' | H : context [mbind (M:=option) (A:=?A) ?f ?o] |- _ => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx | H : context [fmap (M:=option) (A:=?A) ?f ?o] |- _ => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx | H : context [default (A:=?A) _ ?o _] |- _ => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx | H : context [ match ?o with _ => _ end ] |- _ => match type of o with | option ?A => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx end | H : mbind (M:=option) _ ?o = ?x |- _ => match o with Some _ => fail 1 | None => fail 1 | _ => idtac end; match x with Some _ => idtac | None => idtac | _ => fail 1 end; destruct o eqn:? | H : ?x = mbind (M:=option) _ ?o |- _ => match o with Some _ => fail 1 | None => fail 1 | _ => idtac end; match x with Some _ => idtac | None => idtac | _ => fail 1 end; destruct o eqn:? | H : fmap (M:=option) _ ?o = ?x |- _ => match o with Some _ => fail 1 | None => fail 1 | _ => idtac end; match x with Some _ => idtac | None => idtac | _ => fail 1 end; destruct o eqn:? | H : ?x = fmap (M:=option) _ ?o |- _ => match o with Some _ => fail 1 | None => fail 1 | _ => idtac end; match x with Some _ => idtac | None => idtac | _ => fail 1 end; destruct o eqn:? | |- context [mbind (M:=option) (A:=?A) ?f ?o] => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx | |- context [fmap (M:=option) (A:=?A) ?f ?o] => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx | |- context [default (A:=?A) _ ?o _] => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx | |- context [from_option (A:=?A) _ ?o] => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx | |- context [ match ?o with _ => _ end ] => match type of o with | option ?A => let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx end | _ => rewrite decide_True by tac | _ => rewrite decide_False by tac | _ => rewrite option_guard_True by tac | _ => rewrite option_guard_False by tac | _ => progress case_decide | _ => progress case_option_guard end. Tactic Notation "simplify_option_equality" := simplify_option_equality by eauto. (** * Union, intersection and difference *) Instance option_union_with {A} : UnionWith A (option A) := λ f x y, match x, y with | Some a, Some b => f a b | Some a, None => Some a | None, Some b => Some b | None, None => None end. Instance option_intersection_with {A} : IntersectionWith A (option A) := λ f x y, match x, y with Some a, Some b => f a b | _, _ => None end. Instance option_difference_with {A} : DifferenceWith A (option A) := λ f x y, match x, y with | Some a, Some b => f a b | Some a, None => Some a | None, _ => None end. Section option_union_intersection_difference. Context {A} (f : A → A → option A). Global Instance: LeftId (=) None (union_with f). Proof. by intros [?|]. Qed. Global Instance: RightId (=) None (union_with f). Proof. by intros [?|]. Qed. Global Instance: Commutative (=) f → Commutative (=) (union_with f). Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed. Global Instance: LeftAbsorb (=) None (intersection_with f). Proof. by intros [?|]. Qed. Global Instance: RightAbsorb (=) None (intersection_with f). Proof. by intros [?|]. Qed. Global Instance: Commutative (=) f → Commutative (=) (intersection_with f). Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed. Global Instance: RightId (=) None (difference_with f). Proof. by intros [?|]. Qed. End option_union_intersection_difference.