(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) From stdpp Require Export list. Local Open Scope positive. Class Countable A `{∀ x y : A, Decision (x = y)} := { encode : A → positive; decode : positive → option A; decode_encode x : decode (encode x) = Some x }. Arguments encode : simpl never. Arguments decode : simpl never. Definition encode_nat `{Countable A} (x : A) : nat := pred (Pos.to_nat (encode x)). Definition decode_nat `{Countable A} (i : nat) : option A := decode (Pos.of_nat (S i)). Instance encode_inj `{Countable A} : Inj (=) (=) encode. Proof. intros x y Hxy; apply (inj Some). by rewrite <-(decode_encode x), Hxy, decode_encode. Qed. Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat. Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed. Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x. Proof. pose proof (Pos2Nat.is_pos (encode x)). unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia. by rewrite Pos2Nat.id, decode_encode. Qed. (** * Choice principles *) Section choice. Context `{Countable A} (P : A → Prop) `{∀ x, Decision (P x)}. Inductive choose_step: relation positive := | choose_step_None {p} : decode p = None → choose_step (Psucc p) p | choose_step_Some {p x} : decode p = Some x → ¬P x → choose_step (Psucc p) p. Lemma choose_step_acc : (∃ x, P x) → Acc choose_step 1%positive. Proof. intros [x Hx]. cut (∀ i p, i ≤ encode x → 1 + encode x = p + i → Acc choose_step p). { intros help. by apply (help (encode x)). } induction i as [|i IH] using Pos.peano_ind; intros p ??. { constructor. intros j. assert (p = encode x) by lia; subst. inversion 1 as [? Hd|?? Hd]; subst; rewrite decode_encode in Hd; congruence. } constructor. intros j. inversion 1 as [? Hd|? y Hd]; subst; auto with lia. Qed. Fixpoint choose_go {i} (acc : Acc choose_step i) : A := match Some_dec (decode i) with | inleft (x↾Hx) => match decide (P x) with | left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H)) end | inright H => choose_go (Acc_inv acc (choose_step_None H)) end. Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc). Proof. destruct acc; simpl. repeat case_match; auto. Qed. Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) : choose_go acc1 = choose_go acc2. Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed. Definition choose (H: ∃ x, P x) : A := choose_go (choose_step_acc H). Definition choose_correct (H: ∃ x, P x) : P (choose H) := choose_go_correct _. Definition choose_pi (H1 H2 : ∃ x, P x) : choose H1 = choose H2 := choose_go_pi _ _. Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA. End choice. Lemma surj_cancel `{Countable A} `{∀ x y : B, Decision (x = y)} (f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }. Proof. exists (λ y, choose (λ x, f x = y) (surj f y)). intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)). Qed. (** * Instances *) (** ** Option *) Program Instance option_countable `{Countable A} : Countable (option A) := {| encode o := match o with None => 1 | Some x => Pos.succ (encode x) end; decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p) |}. Next Obligation. intros ??? [x|]; simpl; repeat case_decide; auto with lia. by rewrite Pos.pred_succ, decode_encode. Qed. (** ** Sums *) Program Instance sum_countable `{Countable A} `{Countable B} : Countable (A + B)%type := {| encode xy := match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end; decode p := match p with | 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p end |}. Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed. (** ** Products *) Fixpoint prod_encode_fst (p : positive) : positive := match p with | 1 => 1 | p~0 => (prod_encode_fst p)~0~0 | p~1 => (prod_encode_fst p)~0~1 end. Fixpoint prod_encode_snd (p : positive) : positive := match p with | 1 => 1~0 | p~0 => (prod_encode_snd p)~0~0 | p~1 => (prod_encode_snd p)~1~0 end. Fixpoint prod_encode (p q : positive) : positive := match p, q with | 1, 1 => 1~1 | p~0, 1 => (prod_encode_fst p)~1~0 | p~1, 1 => (prod_encode_fst p)~1~1 | 1, q~0 => (prod_encode_snd q)~0~1 | 1, q~1 => (prod_encode_snd q)~1~1 | p~0, q~0 => (prod_encode p q)~0~0 | p~0, q~1 => (prod_encode p q)~1~0 | p~1, q~0 => (prod_encode p q)~0~1 | p~1, q~1 => (prod_encode p q)~1~1 end. Fixpoint prod_decode_fst (p : positive) : option positive := match p with | p~0~0 => (~0) <$> prod_decode_fst p | p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end | p~1~0 => (~0) <$> prod_decode_fst p | p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end | 1~0 => None | 1~1 => Some 1 | 1 => Some 1 end. Fixpoint prod_decode_snd (p : positive) : option positive := match p with | p~0~0 => (~0) <$> prod_decode_snd p | p~0~1 => (~0) <$> prod_decode_snd p | p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end | p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end | 1~0 => Some 1 | 1~1 => Some 1 | 1 => None end. Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p. Proof. assert (∀ p, prod_decode_fst (prod_encode_fst p) = Some p). { intros p'. by induction p'; simplify_option_equality. } assert (∀ p, prod_decode_fst (prod_encode_snd p) = None). { intros p'. by induction p'; simplify_option_equality. } revert q. by induction p; intros [?|?|]; simplify_option_equality. Qed. Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q. Proof. assert (∀ p, prod_decode_snd (prod_encode_snd p) = Some p). { intros p'. by induction p'; simplify_option_equality. } assert (∀ p, prod_decode_snd (prod_encode_fst p) = None). { intros p'. by induction p'; simplify_option_equality. } revert q. by induction p; intros [?|?|]; simplify_option_equality. Qed. Program Instance prod_countable `{Countable A} `{Countable B} : Countable (A * B)%type := {| encode xy := prod_encode (encode (xy.1)) (encode (xy.2)); decode p := x ← prod_decode_fst p ≫= decode; y ← prod_decode_snd p ≫= decode; Some (x, y) |}. Next Obligation. intros ?????? [x y]; simpl. rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl. by rewrite !decode_encode. Qed. (** ** Lists *) (* Lists are encoded as 1 separated sequences of 0s corresponding to the unary representation of the elements. *) Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive := match l with | [] => acc | x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l end. Fixpoint list_decode `{Countable A} (acc : list A) (n : nat) (p : positive) : option (list A) := match p with | 1 => Some acc | p~0 => list_decode acc (S n) p | p~1 => x ← decode_nat n; list_decode (x :: acc) O p end. Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3. Proof. by induction n; f_equal'. Qed. Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc : list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2. Proof. revert acc; induction l1; simpl; auto. induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|]. by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1. Qed. Program Instance list_countable `{Countable A} : Countable (list A) := {| encode := list_encode 1; decode := list_decode [] 0 |}. Next Obligation. intros A ??; simpl. assert (∀ m acc n p, list_decode acc n (Nat.iter m (~0) p) = list_decode acc (n + m) p) as decode_iter. { induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|]. by rewrite IH, Nat.add_succ_r. } cut (∀ l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list. { by intros help l; rewrite help, (right_id_L _ _). } induction l as [|x l IH] using @rev_ind; intros acc; [done|]. rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl. by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _). Qed. Lemma list_encode_app `{Countable A} (l1 l2 : list A) : encode (l1 ++ l2)%list = encode l1 ++ encode l2. Proof. apply list_encode_app'. Qed. Lemma list_encode_cons `{Countable A} x (l : list A) : encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l. Proof. apply (list_encode_app' [_]). Qed. Lemma list_encode_suffix `{Countable A} (l k : list A) : l `suffix_of` k → ∃ q, encode k = q ++ encode l. Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed. Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) : length l1 = length l2 → q1 ++ encode l1 = q2 ++ encode l2 → l1 = l2. Proof. revert q1 q2 l2; induction l1 as [|a1 l1 IH]; intros q1 q2 [|a2 l2] ?; simplify_equality'; auto. rewrite !list_encode_cons, !(assoc _); intros Hl. assert (l1 = l2) as <- by eauto; clear IH; f_equal. apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear. generalize (encode_nat a2). induction (encode_nat a1); intros [|?] ?; naive_solver. Qed. (** ** Numbers *) Instance pos_countable : Countable positive := {| encode := id; decode := Some; decode_encode x := eq_refl |}. Program Instance N_countable : Countable N := {| encode x := match x with N0 => 1 | Npos p => Pos.succ p end; decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p)) |}. Next Obligation. by intros [|p];simpl;[|rewrite decide_False,Pos.pred_succ by (by destruct p)]. Qed. Program Instance Z_countable : Countable Z := {| encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end; decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end |}. Next Obligation. by intros [|p|p]. Qed. Program Instance nat_countable : Countable nat := {| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}. Next Obligation. by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id. Qed.