proofmode.v 48.2 KB
Newer Older
1
From iris.proofmode Require Import tactics intro_patterns.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
5
Unset Mangle Names.

Ralf Jung's avatar
Ralf Jung committed
6
Section tests.
7
Context {PROP : bi}.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Implicit Types P Q R : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
11
12
Lemma test_eauto_emp_isplit_biwand P : emp  P - P.
Proof. eauto 6. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
13
Lemma test_eauto_isplit_biwand P :  P - P.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
14
Proof. eauto. Qed.
15

Gregory Malecha's avatar
Gregory Malecha committed
16
Fixpoint test_fixpoint (n : nat) {struct n} : True  emp @{PROP}  (n + 0)%nat = n .
17
18
19
20
21
22
Proof.
  case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
  iIntros (_) "_".
  by iDestruct (test_fixpoint with "[//]") as %->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
23
Check "demo_0".
24
Lemma demo_0 P Q :  (P  Q) - ( x, x = 0  x = 1)  (Q  P).
25
Proof.
26
  iIntros "H #H2". Show. iDestruct "H" as "###H".
27
  (* should remove the disjunction "H" *)
28
  iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
29
30
31
32
  (* should keep the disjunction "H" because it is instantiated *)
  iDestruct ("H2" $! 10) as "[%|%]". done. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat  PROP) `{!Affine P4, !Absorbing P2} :
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  emp -
35
36
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
37
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
38
39
40
41
42
43
44
45
46
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
  - iFrame "H3". iRight. auto.
  - iSplitL "HQ". iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
51
Lemma demo_3 P1 P2 P3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
  P1  P2  P3 - P1   (P2   x, (P3  x = 0)  P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
54

55
56
57
58
59
60
61
62
Lemma test_pure_space_separated P1 :
  <affine> True  P1 - P1.
Proof.
  (* [% H] should be parsed as two separate patterns and not the pure name
  [H] *)
  iIntros "[% H] //".
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
63
64
Definition foo (P : PROP) := (P - P)%I.
Definition bar : PROP := ( P, foo P)%I.
65

Gregory Malecha's avatar
Gregory Malecha committed
66
Lemma test_unfold_constants :  bar.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Proof. iIntros (P) "HP //". Qed.
68

Ralf Jung's avatar
Ralf Jung committed
69
Check "test_iStopProof".
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Lemma test_iStopProof Q : emp - Q - Q.
Ralf Jung's avatar
Ralf Jung committed
71
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofe} (x y : A) P :
74
   ( z, P - <affine> (z  y)) - (P - P  (x,x)  (y,x)).
75
Proof.
76
  iIntros "#H1 H2".
77
  iRewrite (internal_eq_sym x x with "[# //]").
78
  iRewrite -("H1" $! _ with "[- //]").
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  auto.
80
81
Qed.

Ralf Jung's avatar
Ralf Jung committed
82
Check "test_iDestruct_and_emp".
83
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
84
  P  emp - emp  Q - <affine> (P  Q).
Ralf Jung's avatar
Ralf Jung committed
85
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
86

Gregory Malecha's avatar
Gregory Malecha committed
87
Lemma test_iIntros_persistent P Q `{!Persistent Q} :  (P  Q  P  Q).
88
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89

Robbert Krebbers's avatar
Robbert Krebbers committed
90
91
92
93
94
95
96
97
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
  Q   (Q - P) - P  Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
  Q  (Q - P) - P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
Lemma test_iDestruct_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iDestruct] does not consume "HQP" because a wand is instantiated *)
  iDestruct ("HQP" with "HQ1") as "HP1".
  iDestruct ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.
Lemma test_iPoseProof_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iPoseProof] does not consume "HQP" because a wand is instantiated *)
  iPoseProof ("HQP" with "HQ1") as "HP1".
  iPoseProof ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.

Lemma test_iDestruct_pose_forall (Φ : nat  PROP) :
   ( x, Φ x) - Φ 0  Φ 1.
Proof.
  iIntros "#H".
  (* [iDestruct] does not consume "H" because quantifiers are instantiated *)
  iDestruct ("H" $! 0) as "$".
  iDestruct ("H" $! 1) as "$".
Qed.

Lemma test_iDestruct_or P Q :  (P  Q) - Q  P.
Proof.
  iIntros "#H".
  (* [iDestruct] consumes "H" because no quantifiers/wands are instantiated *)
  iDestruct "H" as "[H|H]".
  - by iRight.
  - by iLeft.
Qed.
Lemma test_iPoseProof_or P Q :  (P  Q) - (Q  P)  (P  Q).
Proof.
  iIntros "#H".
  (* [iPoseProof] does not consume "H" despite that no quantifiers/wands are
  instantiated. This makes it different from [iDestruct]. *)
  iPoseProof "H" as "[HP|HQ]".
  - iFrame "H". by iRight.
  - iFrame "H". by iLeft.
Qed.

144
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
147
  Q  (Q - P) - P  Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q :  Q - Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.

Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} :  Q - Q.
Proof.
  iIntros "#-#HQ".
  (* Since [Q] is affine, it should not add an <affine> modality *)
  Show. done.
Qed.

Lemma test_iDestruct_spatial_noop Q : Q - Q.
Proof. iIntros "-#HQ". done. Qed.

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
Lemma test_iDestruct_exists (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof. iIntros "H". iDestruct "H" as (y) "H". by iExists y. Qed.

Lemma test_iDestruct_exists_automatic (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name should by [y] *)
  by iExists y.
Qed.

Lemma test_iDestruct_exists_automatic_multiple (Φ: nat  PROP) :
  ( y n baz, Φ (y+n+baz)) -  n, Φ n.
Proof. iDestruct 1 as (???) "H". by iExists (y+n+baz). Qed.

Lemma test_iDestruct_exists_freshen (y:nat) (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name is the freshened form of [y] *)
  by iExists y0.
Qed.

Check "test_iDestruct_exists_not_exists".
Lemma test_iDestruct_exists_not_exists P :
  P - P.
Proof. Fail iDestruct 1 as (?) "H". Abort.

Lemma test_iDestruct_exists_explicit_name (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  (* give an explicit name that isn't the binder name *)
  iDestruct 1 as (foo) "?".
  by iExists foo.
Qed.

Lemma test_iDestruct_exists_pure (Φ: nat  Prop) :
   y, Φ y @{PROP}  n, ⌜Φ n.
Proof.
  iDestruct 1 as (?) "H".
  by iExists y.
Qed.

Lemma test_iDestruct_exists_and_pure (H: True) P :
  False  P - False.
Proof.
  (* this automatic name uses [fresh H] as a sensible default (it's a hypothesis
  in [Prop] and the user cannot supply a name in their code) *)
  iDestruct 1 as (?) "H".
  contradict H0.
Qed.

Check "test_iDestruct_exists_intuitionistic".
Lemma test_iDestruct_exists_intuitionistic P (Φ: nat  PROP) :
   ( y, Φ y  P) - P.
Proof.
  iDestruct 1 as (?) "#H". Show.
  iDestruct "H" as "[_ $]".
Qed.

Lemma test_iDestruct_exists_freshen_local_name (Φ: nat  PROP) :
  let y := 0 in
   ( y, Φ y) -  n, Φ (y+n).
Proof.
  iIntros (y) "#H".
  iDestruct "H" as (?) "H".
  iExists y0; auto.
Qed.

235
236
237
238
239
240
241
242
243
244
245
246
(* regression test for #337 *)
Check "test_iDestruct_exists_anonymous".
Lemma test_iDestruct_exists_anonymous P Φ :
  ( _:nat, P)  ( x:nat, Φ x) - P   x, Φ x.
Proof.
  iIntros "[HP HΦ]".
  (* this should not use [x] as the default name for the unnamed binder *)
  iDestruct "HP" as (?) "$". Show.
  iDestruct "HΦ" as (x) "HΦ".
  by iExists x.
Qed.

247
248
249
250
251
252
253
Definition an_exists P : PROP := ( (an_exists_name:nat), ^an_exists_name P)%I.

(* should use the name from within [an_exists] *)
Lemma test_iDestruct_exists_automatic_def P :
  an_exists P -  k, ^k P.
Proof. iDestruct 1 as (?) "H". by iExists an_exists_name. Qed.

254
(* use an Iris intro pattern [% H] rather than (?) to indicate iExistDestruct *)
255
256
257
258
259
260
261
262
Lemma test_exists_intro_pattern_anonymous P (Φ: nat  PROP) :
  P  ( y:nat, Φ y) -  x, P  Φ x.
Proof.
  iIntros "[HP1 [% HP2]]".
  iExists y.
  iFrame "HP1 HP2".
Qed.

Gregory Malecha's avatar
Gregory Malecha committed
263
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ    φ   P   φ  ψ   P.
264
265
Proof. iIntros (??) "H". auto. Qed.

266
267
268
269
270
271
272
273
274
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat  PROP) :
    x : nat, Ψ x  Ψ x.
Proof.
  iIntros "%".
  (* should be a trivial implication now *)
  Show. auto.
Qed.

275
Lemma test_iIntros_pure_not `{!BiPureForall PROP} : @{PROP}  ¬False .
276
277
Proof. by iIntros (?). Qed.

278
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
Gregory Malecha's avatar
Gregory Malecha committed
279
280
    x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x).
281
Proof.
282
  iIntros (a) "*".
283
  iIntros "#Hfoo **".
Robbert Krebbers's avatar
Robbert Krebbers committed
284
  iIntros "_ //".
285
Qed.
286

287
Lemma test_very_fast_iIntros P :
Gregory Malecha's avatar
Gregory Malecha committed
288
   x y : nat,   x = y   P - P.
289
290
Proof. by iIntros. Qed.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
Lemma test_iIntros_automatic_name (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros (?) "H". by iExists y. Qed.

Lemma test_iIntros_automatic_name_proofmode_intro (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

(* even an object-level forall should get the right name *)
Lemma test_iIntros_object_forall P :
  P -  (y:unit), P.
Proof. iIntros "H". iIntros (?). destruct y. iAssumption. Qed.

Lemma test_iIntros_object_proofmode_intro (Φ: nat  PROP) :
    y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

Check "test_iIntros_pure_names".
Lemma test_iIntros_pure_names (H:True) P :
   x y : nat,   x = y   P - P.
Proof.
  iIntros (???).
  (* the pure hypothesis should get a sensible [H0] as its name *)
  Show. auto.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
317
Definition tc_opaque_test : PROP := tc_opaque ( x : nat,  x = x )%I.
Gregory Malecha's avatar
Gregory Malecha committed
318
Lemma test_iIntros_tc_opaque :  tc_opaque_test.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
Proof. by iIntros (x). Qed.
320

Robbert Krebbers's avatar
Robbert Krebbers committed
321
322
(** Prior to 0b84351c this used to loop, now [iAssumption] instantiates [R] with
[False] and performs false elimination. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
323
324
325
Lemma test_iAssumption_evar_ex_false :  R, R   P, P.
Proof. eexists. iIntros "?" (P). iAssumption. Qed.

326
327
328
Lemma test_iApply_evar P Q R : ( Q, Q - P) - R - P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.

329
330
331
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P - Q - R - Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.

332
333
334
Lemma test_done_goal_evar Q :  P, Q  P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
335
Lemma test_iDestruct_spatial_and P Q1 Q2 : P  (Q1  Q2) - P  Q1.
336
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337

Robbert Krebbers's avatar
Robbert Krebbers committed
338
Lemma test_iAssert_persistent P Q : P - Q - True.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
340
341
342
343
344
345
346
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
347

348
349
350
351
352
Lemma test_iAssert_persistently P :  P - True.
Proof.
  iIntros "HP". iAssert ( P)%I with "[# //]" as "#H". done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
353
Lemma test_iSpecialize_auto_frame P Q R :
354
  (P - True - True - Q - R) - P - Q - R.
355
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
356

Gregory Malecha's avatar
Gregory Malecha committed
357
358
Lemma test_iSpecialize_pure (φ : Prop) Q R :
  φ  (⌜φ⌝ - Q)   Q.
Ralf Jung's avatar
Ralf Jung committed
359
360
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
  φ  (⌜φ⌝ - Q)  Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
  (⌜φ⌝ - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.

Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.

380
Lemma test_iSpecialize_Coq_entailment P Q R :
Gregory Malecha's avatar
Gregory Malecha committed
381
  ( P)  (P - Q)  ( Q).
382
383
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
Lemma test_iSpecialize_intuitionistic P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP").
  iSpecialize ("H" with "[HP]"); first done.
  iSpecialize ("H" with "[]"); first done.
  iSpecialize ("H" with "[-HR]"); first done.
  iSpecialize ("H" with "[#]"); first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]"); first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_2 P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP") as #.
  iSpecialize ("H" with "[HP]") as #; first done.
  iSpecialize ("H" with "[]") as #; first done.
  iSpecialize ("H" with "[-HR]") as #; first done.
  iSpecialize ("H" with "[#]") as #; first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]") as #; first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_3 P Q R :
  P -  (P - Q) -  (P - <pers> Q) -  (Q - R) - P   (Q  R).
Proof.
  iIntros "HP #H1 #H2 #H3".
  (* Should fail, [Q] is not persistent *)
  Fail iSpecialize ("H1" with "HP") as #.
  (* Should succeed, [<pers> Q] is persistent *)
  iSpecialize ("H2" with "HP") as #.
  (* Should succeed, despite [R] not being persistent, no spatial premises are
  needed to prove [Q] *)
  iSpecialize ("H3" with "H2") as #.
  by iFrame "#".
Qed.

Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
   P -  |==> P.
Proof.
  iIntros "#HP".
  (* Test that [HPupd1] ends up in the intuitionistic context *)
  iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
  (* This should not work, [|==> P] is not persistent. *)
  Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
  done.
Qed.

440
441
442
Lemma test_iSpecialize_evar P : ( R, R - R) - P - P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.

443
444
445
446
Lemma test_iPure_intro_emp R `{!Affine R} :
  R - emp.
Proof. iIntros "HR". by iPureIntro. Qed.

447
448
449
450
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
  P - Q  R - emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.

451
452
453
454
455
456
457
Lemma test_iPure_intro (φ : nat  Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat  Prop) P Q R `{!Persistent Q} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.

458
459
(* Ensure that [% ...] works as a pattern when the left-hand side of and/sep is
pure. *)
Ralf Jung's avatar
Ralf Jung committed
460
Lemma test_pure_and_sep_destruct_affine `{!BiAffine PROP} (φ : Prop) P :
461
462
463
464
  ⌜φ⌝  (⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
465
Lemma test_pure_and_sep_destruct_1 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
466
467
468
469
  ⌜φ⌝  (<affine> ⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
470
Lemma test_pure_and_sep_destruct_2 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
471
472
473
474
  ⌜φ⌝  (⌜φ⌝  <absorb> P) - <absorb> P.
Proof.
  iIntros "[% [% $]]".
Qed.
475
476
477
478
479
480
481
482
(* Ensure that [% %] also works when the conjunction is *inside* ⌜...⌝ *)
Lemma test_pure_inner_and_destruct :
  False  True @{PROP} False.
Proof.
  iIntros "[% %]". done.
Qed.

(* Ensure that [% %] works as a pattern for an existential with a pure body. *)
483
Lemma test_exist_pure_destruct_1 :
484
485
486
487
  ( x,  x = 0 ) @{PROP} True.
Proof.
  iIntros "[% %]". done.
Qed.
488
489
490
491
492
493
494
(* Also test nested existentials where the type of the 2nd depends on the first
(which could cause trouble if we do things in the wrong order) *)
Lemma test_exist_pure_destruct_2 :
  ( x (_:x=0), True) @{PROP} True.
Proof.
  iIntros "(% & % & $)".
Qed.
495

Ralf Jung's avatar
Ralf Jung committed
496
Lemma test_fresh P Q:
497
498
499
500
501
  (P  Q) - (P  Q).
Proof.
  iIntros "H".
  let H1 := iFresh in
  let H2 := iFresh in
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
502
  let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
503
504
505
506
  iDestruct "H" as pat.
  iFrame.
Qed.

507
(* Test for issue #288 *)
508
Lemma test_iExists_unused :   P : PROP,  x : nat, P.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
510
511
512
513
514
515
Proof.
  iExists _.
  iExists 10.
  iAssert emp%I as "H"; first done.
  iExact "H".
Qed.

516
(* Check coercions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Lemma test_iExist_coercion (P : Z  PROP) : ( x, P x) -  x, P x.
518
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
519

Gregory Malecha's avatar
Gregory Malecha committed
520
Lemma test_iExist_tc `{Set_ A C} P :   x1 x2 : gset positive, P - P.
521
522
523
Proof. iExists {[ 1%positive ]}, . auto. Qed.

Lemma test_iSpecialize_tc P : ( x y z : gset positive, P) - P.
524
525
Proof.
  iIntros "H".
Ralf Jung's avatar
Ralf Jung committed
526
  (* FIXME: this [unshelve] and [apply _] should not be needed. *)
527
528
  unshelve iSpecialize ("H" $!  {[ 1%positive ]} ); try apply _. done.
Qed.
529

530
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofe} (φ : Prop) (y z : A) :
531
  φ  <affine> y  z - ( φ    φ   y  z : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.

534
535
536
537
538
539
540
541
542
543
544
545
546
547
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
  BiAffine PROP 
   P1 - Q2 - P2 - (P1  P2  False  P2)  (Q1  Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P - (True  True)  P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.

Lemma test_iFrame_conjunction_1 P Q :
  P - Q - (P  Q)  (P  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
  P - Q - (P  P)  (Q  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.

548
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P - Q -  P  Q.
549
550
Proof. iIntros "H1 H2". by iFrame "H1". Qed.

551
552
Lemma test_iFrame_affinely_1 P Q `{!Affine P} :
  P - <affine> Q - <affine> (P  Q).
553
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
554
555
Lemma test_iFrame_affinely_2 P Q `{!Affine P, !Affine Q} :
  P - Q - <affine> (P  Q).
556
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
557

Robbert Krebbers's avatar
Robbert Krebbers committed
558
559
560
Lemma test_iAssert_modality P :  False -  P.
Proof.
  iIntros "HF".
561
  iAssert (<affine> False)%I with "[> -]" as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
562
563
  by iMod "HF".
Qed.
564

565
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
566
  <affine>  P -  <affine> P.
567
568
Proof. iIntros "H". iMod "H". done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
569
Lemma test_iAssumption_False P : False - P.
570
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571

572
573
574
575
576
577
Lemma test_iAssumption_coq_1 P Q : ( Q)  <affine> P - Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Lemma test_iAssumption_coq_2 P Q : (  Q)  <affine> P -  Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
578
(* Check instantiation and dependent types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
579
Lemma test_iSpecialize_dependent_type (P :  n, vec nat n  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
580
581
582
583
584
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
585

586
587
588
589
590
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat  PROP) l x :
  x  l  ([ list] y  l, Φ y) - Φ x.
Proof.
  iIntros (Hp) "HT".
591
  iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
592
593
594
  done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
595
596
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R  False.
597
Proof. eauto 10 with iFrame. Qed.
598

599
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
Robbert Krebbers's avatar
Robbert Krebbers committed
600
  P - Q - R  R  Q  P  R  False.
601
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
602

603
604
605
606
Lemma test_iCombine_frame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
607
Lemma test_iNext_evar P : P - True.
Ralf Jung's avatar
Ralf Jung committed
608
609
610
611
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
612

613
614
Lemma test_iNext_sep1 P Q (R1 := (P  Q)%I) :
  ( P   Q)  R1 -  ((P  Q)  R1).
Robbert Krebbers's avatar
Robbert Krebbers committed
615
616
617
618
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
619

Robbert Krebbers's avatar
Robbert Krebbers committed
620
Lemma test_iNext_sep2 P Q :  P   Q -  (P  Q).
621
622
623
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
624

Robbert Krebbers's avatar
Robbert Krebbers committed
625
Lemma test_iNext_quantifier {A} (Φ : A  A  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
626
627
628
  ( y,  x,  Φ x y) -  ( y,  x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.

629
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofe} (f : A -n> A) x y :
630
631
632
  Next x  Next y - (Next (f x)  Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
633
Lemma test_iFrame_persistent (P Q : PROP) :
634
   P - Q - <pers> (P  P)  (P  Q  Q).
635
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
636

637
Lemma test_iSplit_persistently P Q :  P - <pers> (P  P).
638
Proof. iIntros "#?". by iSplit. Qed.
Ralf Jung's avatar
Ralf Jung committed
639

640
Lemma test_iSpecialize_persistent P Q :  P - (<pers> P  Q) - Q.
641
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
642

643
Lemma test_iDestruct_persistent P (Φ : nat  PROP) `{! x, Persistent (Φ x)}:
644
   (P -  x, Φ x) -
645
646
647
648
649
  P -  x, Φ x  P.
Proof.
  iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.

650
Lemma test_iLöb `{!BiLöb PROP} P :   n, ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
651
652
653
654
Proof.
  iLöb as "IH". iDestruct "IH" as (n) "IH".
  by iExists (S n).
Qed.
655

656
Lemma test_iInduction_wf (x : nat) P Q :
657
   P - Q -  (x + 0 = x)%nat .
658
659
660
Proof.
  iIntros "#HP HQ".
  iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
661
  rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
662
663
Qed.

664
665
666
667
668
669
670
671
672
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat  nat  PROP) y :
  ([ map] x  i  m, Φ y x) - ([ map] x  i  m, emp  Φ y x).
Proof.
  iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
  - by rewrite !big_sepM_empty.
  - rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
    by iApply "IH".
Qed.

673
Lemma test_iIntros_start_proof :
Gregory Malecha's avatar
Gregory Malecha committed
674
  @{PROP} True.
675
676
677
678
679
Proof.
  (* Make sure iIntros actually makes progress and enters the proofmode. *)
  progress iIntros. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
680
Lemma test_True_intros : (True : PROP) - True.
681
682
683
Proof.
  iIntros "?". done.
Qed.
684
685
686
687
688
689
690
691
692
693

Lemma test_iPoseProof_let P Q :
  (let R := True%I in R  P  Q) 
  P  Q.
Proof.
  iIntros (help) "HP".
  iPoseProof (help with "[$HP]") as "?". done.
Qed.

Lemma test_iIntros_let P :
Robbert Krebbers's avatar
Robbert Krebbers committed
694
695
   Q, let R := emp%I in P - R - Q - P  Q.
Proof. iIntros (Q R) "$ _ $". Qed.
696

697
698
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
699
Proof.
700
  iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
701
702
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
703
Lemma test_iIntros_modalities `(!Absorbing P) :
Gregory Malecha's avatar
Gregory Malecha committed
704
   <pers> (   x : nat,  x = 0    x = 0  - False - P - P).
705
706
707
708
709
Proof.
  iIntros (x ??).
  iIntros "* **". (* Test that fast intros do not work under modalities *)
  iIntros ([]).
Qed.
710

711
712
713
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
  x1 = x2  ( x2 = x3    x3  x4   P) -  x1 = x4   P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
714

715
716
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
717
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
718

719
Lemma test_iAlways P Q R :
720
   P - <pers> Q  R - <pers> <affine> <affine> P   Q.
Ralf Jung's avatar
Ralf Jung committed
721
Proof. iIntros "#HP #HQ HR". iSplitL. iModIntro. done. iModIntro. done. Qed.
722

Robbert Krebbers's avatar
Robbert Krebbers committed
723
724
725
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
726
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
727
728
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
729
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
730
731
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
732
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
733
734
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_forall_nondep_4 (φ : Prop) :
735
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
736
737
738
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.

Lemma test_pure_impl_1 (φ : Prop) :
739
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
740
741
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
742
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
743
744
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
745
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_pure_impl_4 (φ : Prop) :
748
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
749
750
751
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.

Lemma test_forall_nondep_impl2 (φ : Prop) P :
752
  φ  P - ( _ : φ, P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
753
754
755
756
757
758
759
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

Lemma test_pure_impl2 (φ : Prop) P :
760
  φ  P - (⌜φ⌝  P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
762
763
764
765
766
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

767
768
769
770
771
Lemma demo_laterN_forall {A} (Φ Ψ: A  PROP) n: ( x, ^n Φ x) - ^n ( x, Φ x).
Proof.
  iIntros "H" (w). iApply ("H" $! w).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
772
Lemma test_iNext_laterN_later P n :  ^n P - ^n  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
773
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
774
Lemma test_iNext_later_laterN P n : ^n  P -  ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
775
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
776
Lemma test_iNext_plus_1 P n1 n2 :  ^n1 ^n2 P - ^n1 ^n2  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
777
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
778
779
Lemma test_iNext_plus_2 P n m : ^n ^m P - ^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
780
Check "test_iNext_plus_3".
Robbert Krebbers's avatar
Robbert Krebbers committed
781
782
Lemma test_iNext_plus_3 P Q n m k :
  ^m ^(2 + S n + k) P - ^m  ^(2 + S n) Q - ^k  ^(S (S n + S m)) (P  Q).
783
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
784

785
786
787
788
789
790
791
792
Lemma test_iNext_unfold P Q n m (R := (^n P)%I) :
  R  ^m True.
Proof.
  iIntros "HR". iNext.
  match goal with |-  context [ R ] => idtac | |- _ => fail end.
  done.
Qed.

793
794
795
Lemma test_iNext_fail P Q a b c d e f g h i j:
  ^(a + b) ^(c + d + e) P - ^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
796
797

Lemma test_specialize_affine_pure (φ : Prop) P :
798
  φ  (<affine> ⌜φ⌝ - P)  P.
799
800
801
802
803
Proof.
  iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.

Lemma test_assert_affine_pure (φ : Prop) P :
804
805
  φ  P  P  <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
806
807
Lemma test_assert_pure (φ : Prop) P :
  φ  P  P  ⌜φ⌝.
808
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
  φ 
  P - P2 -
  (<affine>  φ  - P2 - Q) -
  (P - Q - R1) -
  (R1 - True - R2) -
  R2.
Proof.
  iIntros (?) "HP HP2 HQ H1 H2".
  by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.

Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
   P1 -
   (P1 - P2) -
  (P2 - P2 - P3) -
  (P3 - P4) -
  (P4 - P5) -
  P5.
Proof.
  iIntros "#H #H1 H2 H3 H4".
  by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.

Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
  φ 
   P -  (P - Q) - (Q - Q - R2) - R2.
Proof.
  iIntros (?) "#HP #HQ HR".
  iSpecialize ("HR" with "(HQ HP) (HQ HP)").
  Show.
  done.
Qed.

Lemma test_specialize_intuitionistic P Q :
   P -  (P - Q) -  Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.

849
Lemma test_iEval x y :  (y + x)%nat = 1  -  S (x + y) = 2%nat  : PROP.
850
851
852
853
854
855
Proof.
  iIntros (H).
  iEval (rewrite (Nat.add_comm x y) // H).
  done.
Qed.

856
857
858
859
860
861
862
Lemma test_iEval_precedence : True  True : PROP.
Proof.
  iIntros.
  (* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
  iEval (rewrite /=); iPureIntro; exact I.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
863
864
865
866
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.

867
868
869
870
871
Lemma test_iSimpl_in_2 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.

872
873
874
875
876
Lemma test_iSimpl_in3 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.

Dan Frumin's avatar
Dan Frumin committed
877
878
879
880
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.

881
Lemma test_iPureIntro_absorbing (φ : Prop) :
Gregory Malecha's avatar
Gregory Malecha committed
882
  φ  @{PROP} <absorb> ⌜φ⌝.
883
884
Proof. intros ?. iPureIntro. done. Qed.

Ralf Jung's avatar
Ralf Jung committed
885
Check "test_iFrame_later_1".
886
Lemma test_iFrame_later_1 P Q : P   Q -  (P   Q).
887
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
888

Ralf Jung's avatar
Ralf Jung committed
889
Check "test_iFrame_later_2".
890
Lemma test_iFrame_later_2 P Q :  P   Q -  ( P   Q).
891
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
892
893
894
895
896

Lemma test_with_ident P Q R : P - Q - (P - Q - R) - R.
Proof.
  iIntros "? HQ H".
  iMatchHyp (fun H _ =>
897
    iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
898
Qed.
899
900

Lemma iFrame_with_evar_r P Q :
901
   R, (P - Q - P  R)  R = Q.
902
Proof.
903
  eexists. split. iIntros "HP HQ". iFrame. iApply "HQ". done.
904
905
Qed.
Lemma iFrame_with_evar_l P Q :
906
   R, (P - Q - R  P)  R = Q.
907
Proof.
908
  eexists. split. iIntros "HP HQ". Fail iFrame "HQ".
909
  iSplitR "HP"; iAssumption. done.
910
Qed.
911
912
913
914
915
916
Lemma iFrame_with_evar_persistent P Q :
   R, (P -  Q - P  R  Q)  R = emp%I.
Proof.
  eexists. split. iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro. done.
Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
917
918
919
920
921
922
Lemma test_iAccu P Q R S :
   PP, (P - Q - R - S - PP)  PP = (Q  R  S)%I.
Proof.
  eexists. split. iIntros "#? ? ? ?". iAccu. done.
Qed.

Ralf Jung's avatar
Ralf Jung committed
923
Lemma test_iAssumption_evar P :  R, (R  P)  R = P.
924
925
926
927
928
929
930
Proof.
  eexists. split.
  - iIntros "H". iAssumption.
  (* Now verify that the evar was chosen as desired (i.e., it should not pick False). *)
  - reflexivity.
Qed.

Ralf Jung's avatar
Ralf Jung committed
931
932
933
Lemma test_iAssumption_False_no_loop :  R, R   P, P.
Proof. eexists. iIntros "?" (P). done. Qed.

934
935
936
937
Lemma test_apply_affine_impl `{!BiPlainly PROP} (P : PROP) :
  P - ( Q : PROP,  (Q - <pers> Q)   (P - Q)  Q).
Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed.

Ralf Jung's avatar
Ralf Jung committed
938
939
940
941
Lemma test_apply_affine_wand `{!BiPlainly PROP} (P : PROP) :
  P - ( Q : PROP, <affine>  (Q - <pers> Q) - <affine>  (P - Q)