proofmode.v 51.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Import gmap.
2
From iris.bi Require Import laterable.
3
From iris.proofmode Require Import tactics intro_patterns.
Ralf Jung's avatar
Ralf Jung committed
4
From iris.prelude Require Import options.
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
7
Unset Mangle Names.

Ralf Jung's avatar
Ralf Jung committed
8
Section tests.
9
Context {PROP : bi}.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Implicit Types P Q R : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
13
14
Lemma test_eauto_emp_isplit_biwand P : emp  P - P.
Proof. eauto 6. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
15
Lemma test_eauto_isplit_biwand P :  P - P.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
16
Proof. eauto. Qed.
17

Gregory Malecha's avatar
Gregory Malecha committed
18
Fixpoint test_fixpoint (n : nat) {struct n} : True  emp @{PROP}  (n + 0)%nat = n .
19
20
21
22
23
24
Proof.
  case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
  iIntros (_) "_".
  by iDestruct (test_fixpoint with "[//]") as %->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
25
Check "demo_0".
26
27
Lemma demo_0 `{!BiPersistentlyForall PROP} P Q :
   (P  Q) - ( x, x = 0  x = 1)  (Q  P).
28
Proof.
29
  iIntros "H #H2". Show. iDestruct "H" as "###H".
30
  (* should remove the disjunction "H" *)
31
  iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
32
  (* should keep the disjunction "H" because it is instantiated *)
Ralf Jung's avatar
Ralf Jung committed
33
  iDestruct ("H2" $! 10) as "[%|%]"; done.
34
35
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
36
37
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat  PROP) `{!Affine P4, !Absorbing P2} :
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  emp -
38
39
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
40
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
44
45
46
47
48
49
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
Robbert Krebbers's avatar
Robbert Krebbers committed
50
  - iFrame "H3". iRight. auto.
Ralf Jung's avatar
Ralf Jung committed
51
  - iSplitL "HQ"; first iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
54
Lemma demo_3 P1 P2 P3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
  P1  P2  P3 - P1   (P2   x, (P3  x = 0)  P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
57

58
59
60
61
62
63
64
65
Lemma test_pure_space_separated P1 :
  <affine> True  P1 - P1.
Proof.
  (* [% H] should be parsed as two separate patterns and not the pure name
  [H] *)
  iIntros "[% H] //".
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
66
67
Definition foo (P : PROP) := (P - P)%I.
Definition bar : PROP := ( P, foo P)%I.
68

Gregory Malecha's avatar
Gregory Malecha committed
69
Lemma test_unfold_constants :  bar.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof. iIntros (P) "HP //". Qed.
71

Ralf Jung's avatar
Ralf Jung committed
72
Check "test_iStopProof".
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Lemma test_iStopProof Q : emp - Q - Q.
Ralf Jung's avatar
Ralf Jung committed
74
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofe} (x y : A) P :
77
   ( z, P - <affine> (z  y)) - (P - P  (x,x)  (y,x)).
78
Proof.
79
  iIntros "#H1 H2".
80
  iRewrite (internal_eq_sym x x with "[# //]").
81
  iRewrite -("H1" $! _ with "[- //]").
Robbert Krebbers's avatar
Robbert Krebbers committed
82
  auto.
83
84
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
Lemma test_iRewrite_dom `{!BiInternalEq PROP} {A : ofe} (m1 m2 : gmap nat A) :
  m1  m2 @{PROP}
   dom (gset nat) m1 = dom (gset nat) m2 .
Proof. iIntros "H". by iRewrite "H". Qed.

Ralf Jung's avatar
Ralf Jung committed
90
Check "test_iDestruct_and_emp".
91
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
92
  P  emp - emp  Q - <affine> (P  Q).
Ralf Jung's avatar
Ralf Jung committed
93
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
94

Gregory Malecha's avatar
Gregory Malecha committed
95
Lemma test_iIntros_persistent P Q `{!Persistent Q} :  (P  Q  P  Q).
96
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
97

Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
101
102
103
104
105
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
  Q   (Q - P) - P  Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
  Q  (Q - P) - P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Lemma test_iDestruct_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iDestruct] does not consume "HQP" because a wand is instantiated *)
  iDestruct ("HQP" with "HQ1") as "HP1".
  iDestruct ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.
Lemma test_iPoseProof_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iPoseProof] does not consume "HQP" because a wand is instantiated *)
  iPoseProof ("HQP" with "HQ1") as "HP1".
  iPoseProof ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.

Lemma test_iDestruct_pose_forall (Φ : nat  PROP) :
   ( x, Φ x) - Φ 0  Φ 1.
Proof.
  iIntros "#H".
  (* [iDestruct] does not consume "H" because quantifiers are instantiated *)
  iDestruct ("H" $! 0) as "$".
  iDestruct ("H" $! 1) as "$".
Qed.

Lemma test_iDestruct_or P Q :  (P  Q) - Q  P.
Proof.
  iIntros "#H".
  (* [iDestruct] consumes "H" because no quantifiers/wands are instantiated *)
  iDestruct "H" as "[H|H]".
  - by iRight.
  - by iLeft.
Qed.
Lemma test_iPoseProof_or P Q :  (P  Q) - (Q  P)  (P  Q).
Proof.
  iIntros "#H".
  (* [iPoseProof] does not consume "H" despite that no quantifiers/wands are
  instantiated. This makes it different from [iDestruct]. *)
  iPoseProof "H" as "[HP|HQ]".
  - iFrame "H". by iRight.
  - iFrame "H". by iLeft.
Qed.

152
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
155
  Q  (Q - P) - P  Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q :  Q - Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.

Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} :  Q - Q.
Proof.
  iIntros "#-#HQ".
  (* Since [Q] is affine, it should not add an <affine> modality *)
  Show. done.
Qed.

Lemma test_iDestruct_spatial_noop Q : Q - Q.
Proof. iIntros "-#HQ". done. Qed.

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
Lemma test_iDestruct_exists (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof. iIntros "H". iDestruct "H" as (y) "H". by iExists y. Qed.

Lemma test_iDestruct_exists_automatic (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name should by [y] *)
  by iExists y.
Qed.

Lemma test_iDestruct_exists_automatic_multiple (Φ: nat  PROP) :
  ( y n baz, Φ (y+n+baz)) -  n, Φ n.
Proof. iDestruct 1 as (???) "H". by iExists (y+n+baz). Qed.

Lemma test_iDestruct_exists_freshen (y:nat) (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name is the freshened form of [y] *)
  by iExists y0.
Qed.

Check "test_iDestruct_exists_not_exists".
Lemma test_iDestruct_exists_not_exists P :
  P - P.
Proof. Fail iDestruct 1 as (?) "H". Abort.

Lemma test_iDestruct_exists_explicit_name (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  (* give an explicit name that isn't the binder name *)
  iDestruct 1 as (foo) "?".
  by iExists foo.
Qed.

Lemma test_iDestruct_exists_pure (Φ: nat  Prop) :
   y, Φ y @{PROP}  n, ⌜Φ n.
Proof.
  iDestruct 1 as (?) "H".
  by iExists y.
Qed.

Lemma test_iDestruct_exists_and_pure (H: True) P :
  False  P - False.
Proof.
  (* this automatic name uses [fresh H] as a sensible default (it's a hypothesis
  in [Prop] and the user cannot supply a name in their code) *)
  iDestruct 1 as (?) "H".
  contradict H0.
Qed.

Check "test_iDestruct_exists_intuitionistic".
Lemma test_iDestruct_exists_intuitionistic P (Φ: nat  PROP) :
   ( y, Φ y  P) - P.
Proof.
  iDestruct 1 as (?) "#H". Show.
  iDestruct "H" as "[_ $]".
Qed.

Lemma test_iDestruct_exists_freshen_local_name (Φ: nat  PROP) :
  let y := 0 in
   ( y, Φ y) -  n, Φ (y+n).
Proof.
  iIntros (y) "#H".
  iDestruct "H" as (?) "H".
  iExists y0; auto.
Qed.

243
244
245
246
247
248
249
250
251
252
253
254
(* regression test for #337 *)
Check "test_iDestruct_exists_anonymous".
Lemma test_iDestruct_exists_anonymous P Φ :
  ( _:nat, P)  ( x:nat, Φ x) - P   x, Φ x.
Proof.
  iIntros "[HP HΦ]".
  (* this should not use [x] as the default name for the unnamed binder *)
  iDestruct "HP" as (?) "$". Show.
  iDestruct "HΦ" as (x) "HΦ".
  by iExists x.
Qed.

255
256
257
258
259
260
261
Definition an_exists P : PROP := ( (an_exists_name:nat), ^an_exists_name P)%I.

(* should use the name from within [an_exists] *)
Lemma test_iDestruct_exists_automatic_def P :
  an_exists P -  k, ^k P.
Proof. iDestruct 1 as (?) "H". by iExists an_exists_name. Qed.

262
(* use an Iris intro pattern [% H] rather than (?) to indicate iExistDestruct *)
263
264
265
266
267
268
269
270
Lemma test_exists_intro_pattern_anonymous P (Φ: nat  PROP) :
  P  ( y:nat, Φ y) -  x, P  Φ x.
Proof.
  iIntros "[HP1 [% HP2]]".
  iExists y.
  iFrame "HP1 HP2".
Qed.

Gregory Malecha's avatar
Gregory Malecha committed
271
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ    φ   P   φ  ψ   P.
272
273
Proof. iIntros (??) "H". auto. Qed.

274
275
276
277
278
279
280
281
282
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat  PROP) :
    x : nat, Ψ x  Ψ x.
Proof.
  iIntros "%".
  (* should be a trivial implication now *)
  Show. auto.
Qed.

283
Lemma test_iIntros_pure_not `{!BiPureForall PROP} : @{PROP}  ¬False .
284
285
Proof. by iIntros (?). Qed.

286
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
Gregory Malecha's avatar
Gregory Malecha committed
287
288
    x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x).
289
Proof.
290
  iIntros (a) "*".
291
  iIntros "#Hfoo **".
Robbert Krebbers's avatar
Robbert Krebbers committed
292
  iIntros "_ //".
293
Qed.
294

295
Lemma test_very_fast_iIntros P :
Gregory Malecha's avatar
Gregory Malecha committed
296
   x y : nat,   x = y   P - P.
297
298
Proof. by iIntros. Qed.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
Lemma test_iIntros_automatic_name (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros (?) "H". by iExists y. Qed.

Lemma test_iIntros_automatic_name_proofmode_intro (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

(* even an object-level forall should get the right name *)
Lemma test_iIntros_object_forall P :
  P -  (y:unit), P.
Proof. iIntros "H". iIntros (?). destruct y. iAssumption. Qed.

Lemma test_iIntros_object_proofmode_intro (Φ: nat  PROP) :
    y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

Check "test_iIntros_pure_names".
Lemma test_iIntros_pure_names (H:True) P :
   x y : nat,   x = y   P - P.
Proof.
  iIntros (???).
  (* the pure hypothesis should get a sensible [H0] as its name *)
  Show. auto.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
325
Definition tc_opaque_test : PROP := tc_opaque ( x : nat,  x = x )%I.
Gregory Malecha's avatar
Gregory Malecha committed
326
Lemma test_iIntros_tc_opaque :  tc_opaque_test.
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Proof. by iIntros (x). Qed.
328

Robbert Krebbers's avatar
Robbert Krebbers committed
329
330
(** Prior to 0b84351c this used to loop, now [iAssumption] instantiates [R] with
[False] and performs false elimination. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
333
Lemma test_iAssumption_evar_ex_false :  R, R   P, P.
Proof. eexists. iIntros "?" (P). iAssumption. Qed.

334
335
336
Lemma test_iApply_evar P Q R : ( Q, Q - P) - R - P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.

337
338
339
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P - Q - R - Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.

340
341
342
Lemma test_done_goal_evar Q :  P, Q  P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
343
Lemma test_iDestruct_spatial_and P Q1 Q2 : P  (Q1  Q2) - P  Q1.
344
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
345

Robbert Krebbers's avatar
Robbert Krebbers committed
346
Lemma test_iAssert_persistent P Q : P - Q - True.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
349
350
351
352
353
354
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
355

356
357
358
359
360
Lemma test_iAssert_persistently P :  P - True.
Proof.
  iIntros "HP". iAssert ( P)%I with "[# //]" as "#H". done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
361
Lemma test_iSpecialize_auto_frame P Q R :
362
  (P - True - True - Q - R) - P - Q - R.
363
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
364

Gregory Malecha's avatar
Gregory Malecha committed
365
366
Lemma test_iSpecialize_pure (φ : Prop) Q R :
  φ  (⌜φ⌝ - Q)   Q.
Ralf Jung's avatar
Ralf Jung committed
367
368
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
  φ  (⌜φ⌝ - Q)  Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
  (⌜φ⌝ - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.

Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.

388
Lemma test_iSpecialize_Coq_entailment P Q R :
Gregory Malecha's avatar
Gregory Malecha committed
389
  ( P)  (P - Q)  ( Q).
390
391
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
Lemma test_iSpecialize_intuitionistic P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP").
  iSpecialize ("H" with "[HP]"); first done.
  iSpecialize ("H" with "[]"); first done.
  iSpecialize ("H" with "[-HR]"); first done.
  iSpecialize ("H" with "[#]"); first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]"); first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_2 P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP") as #.
  iSpecialize ("H" with "[HP]") as #; first done.
  iSpecialize ("H" with "[]") as #; first done.
  iSpecialize ("H" with "[-HR]") as #; first done.
  iSpecialize ("H" with "[#]") as #; first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]") as #; first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_3 P Q R :
  P -  (P - Q) -  (P - <pers> Q) -  (Q - R) - P   (Q  R).
Proof.
  iIntros "HP #H1 #H2 #H3".
  (* Should fail, [Q] is not persistent *)
  Fail iSpecialize ("H1" with "HP") as #.
  (* Should succeed, [<pers> Q] is persistent *)
  iSpecialize ("H2" with "HP") as #.
  (* Should succeed, despite [R] not being persistent, no spatial premises are
  needed to prove [Q] *)
  iSpecialize ("H3" with "H2") as #.
  by iFrame "#".
Qed.

Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
   P -  |==> P.
Proof.
  iIntros "#HP".
  (* Test that [HPupd1] ends up in the intuitionistic context *)
  iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
  (* This should not work, [|==> P] is not persistent. *)
  Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
  done.
Qed.

448
449
450
Lemma test_iSpecialize_evar P : ( R, R - R) - P - P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.

451
452
453
454
Lemma test_iPure_intro_emp R `{!Affine R} :
  R - emp.
Proof. iIntros "HR". by iPureIntro. Qed.

455
456
457
458
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
  P - Q  R - emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.

459
460
461
462
463
464
465
Lemma test_iPure_intro (φ : nat  Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat  Prop) P Q R `{!Persistent Q} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.

466
467
(* Ensure that [% ...] works as a pattern when the left-hand side of and/sep is
pure. *)
Ralf Jung's avatar
Ralf Jung committed
468
Lemma test_pure_and_sep_destruct_affine `{!BiAffine PROP} (φ : Prop) P :
469
470
471
472
  ⌜φ⌝  (⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
473
Lemma test_pure_and_sep_destruct_1 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
474
475
476
477
  ⌜φ⌝  (<affine> ⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
478
Lemma test_pure_and_sep_destruct_2 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
479
480
481
482
  ⌜φ⌝  (⌜φ⌝  <absorb> P) - <absorb> P.
Proof.
  iIntros "[% [% $]]".
Qed.
483
484
485
486
487
488
489
490
(* Ensure that [% %] also works when the conjunction is *inside* ⌜...⌝ *)
Lemma test_pure_inner_and_destruct :
  False  True @{PROP} False.
Proof.
  iIntros "[% %]". done.
Qed.

(* Ensure that [% %] works as a pattern for an existential with a pure body. *)
491
Lemma test_exist_pure_destruct_1 :
492
493
494
495
  ( x,  x = 0 ) @{PROP} True.
Proof.
  iIntros "[% %]". done.
Qed.
496
497
498
499
500
501
502
(* Also test nested existentials where the type of the 2nd depends on the first
(which could cause trouble if we do things in the wrong order) *)
Lemma test_exist_pure_destruct_2 :
  ( x (_:x=0), True) @{PROP} True.
Proof.
  iIntros "(% & % & $)".
Qed.
503

Ralf Jung's avatar
Ralf Jung committed
504
Lemma test_fresh P Q:
505
506
507
508
509
  (P  Q) - (P  Q).
Proof.
  iIntros "H".
  let H1 := iFresh in
  let H2 := iFresh in
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
510
  let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
511
512
513
514
  iDestruct "H" as pat.
  iFrame.
Qed.

515
(* Test for issue #288 *)
516
Lemma test_iExists_unused :   P : PROP,  x : nat, P.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
518
519
520
521
522
523
Proof.
  iExists _.
  iExists 10.
  iAssert emp%I as "H"; first done.
  iExact "H".
Qed.

524
(* Check coercions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
525
Lemma test_iExist_coercion (P : Z  PROP) : ( x, P x) -  x, P x.
526
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
527

Gregory Malecha's avatar
Gregory Malecha committed
528
Lemma test_iExist_tc `{Set_ A C} P :   x1 x2 : gset positive, P - P.
529
530
531
Proof. iExists {[ 1%positive ]}, . auto. Qed.

Lemma test_iSpecialize_tc P : ( x y z : gset positive, P) - P.
532
533
Proof.
  iIntros "H".
Ralf Jung's avatar
Ralf Jung committed
534
  (* FIXME: this [unshelve] and [apply _] should not be needed. *)
535
536
  unshelve iSpecialize ("H" $!  {[ 1%positive ]} ); try apply _. done.
Qed.
537

538
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofe} (φ : Prop) (y z : A) :
539
  φ  <affine> y  z - ( φ    φ   y  z : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
540
541
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.

542
543
544
545
546
547
548
549
550
551
552
553
554
555
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
  BiAffine PROP 
   P1 - Q2 - P2 - (P1  P2  False  P2)  (Q1  Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P - (True  True)  P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.

Lemma test_iFrame_conjunction_1 P Q :
  P - Q - (P  Q)  (P  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
  P - Q - (P  P)  (Q  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.

556
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P - Q -  P  Q.
557
558
Proof. iIntros "H1 H2". by iFrame "H1". Qed.

559
560
Lemma test_iFrame_affinely_1 P Q `{!Affine P} :
  P - <affine> Q - <affine> (P  Q).
561
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
562
563
Lemma test_iFrame_affinely_2 P Q `{!Affine P, !Affine Q} :
  P - Q - <affine> (P  Q).
564
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
565

Robbert Krebbers's avatar
Robbert Krebbers committed
566
567
568
Lemma test_iAssert_modality P :  False -  P.
Proof.
  iIntros "HF".
569
  iAssert (<affine> False)%I with "[> -]" as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
570
571
  by iMod "HF".
Qed.
572

573
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
574
  <affine>  P -  <affine> P.
575
576
Proof. iIntros "H". iMod "H". done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
577
Lemma test_iAssumption_False P : False - P.
578
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
579

580
581
582
583
584
585
Lemma test_iAssumption_coq_1 P Q : ( Q)  <affine> P - Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Lemma test_iAssumption_coq_2 P Q : (  Q)  <affine> P -  Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
586
(* Check instantiation and dependent types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
587
Lemma test_iSpecialize_dependent_type (P :  n, vec nat n  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
588
589
590
591
592
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
593

594
595
596
597
598
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat  PROP) l x :
  x  l  ([ list] y  l, Φ y) - Φ x.
Proof.
  iIntros (Hp) "HT".
599
  iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
600
601
602
  done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
603
604
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R  False.
605
Proof. eauto 10 with iFrame. Qed.
606

607
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
Robbert Krebbers's avatar
Robbert Krebbers committed
608
  P - Q - R  R  Q  P  R  False.
609
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
610

611
612
613
614
Lemma test_iCombine_frame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
615
Lemma test_iNext_evar P : P - True.
Ralf Jung's avatar
Ralf Jung committed
616
617
618
619
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620

621
622
Lemma test_iNext_sep1 P Q (R1 := (P  Q)%I) :
  ( P   Q)  R1 -  ((P  Q)  R1).
Robbert Krebbers's avatar
Robbert Krebbers committed
623
624
625
626
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
627

Robbert Krebbers's avatar
Robbert Krebbers committed
628
Lemma test_iNext_sep2 P Q :  P   Q -  (P  Q).
629
630
631
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
632

Robbert Krebbers's avatar
Robbert Krebbers committed
633
Lemma test_iNext_quantifier {A} (Φ : A  A  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
634
635
636
  ( y,  x,  Φ x y) -  ( y,  x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.

637
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofe} (f : A -n> A) x y :
638
639
640
  Next x  Next y - (Next (f x)  Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
641
Lemma test_iFrame_persistent (P Q : PROP) :
642
   P - Q - <pers> (P  P)  (P  Q  Q).
643
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
644

645
Lemma test_iSplit_persistently P Q :  P - <pers> (P  P).
646
Proof. iIntros "#?". by iSplit. Qed.
Ralf Jung's avatar
Ralf Jung committed
647

648
Lemma test_iSpecialize_persistent P Q :  P - (<pers> P  Q) - Q.
649
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
650

651
Lemma test_iDestruct_persistent P (Φ : nat  PROP) `{! x, Persistent (Φ x)}:
652
   (P -  x, Φ x) -
653
654
655
656
657
  P -  x, Φ x  P.
Proof.
  iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.

658
Lemma test_iLöb `{!BiLöb PROP} P :   n, ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
659
660
661
662
Proof.
  iLöb as "IH". iDestruct "IH" as (n) "IH".
  by iExists (S n).
Qed.
663

664
Lemma test_iInduction_wf (x : nat) P Q :
665
   P - Q -  (x + 0 = x)%nat .
666
667
668
Proof.
  iIntros "#HP HQ".
  iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
669
  rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
670
671
Qed.

672
673
674
675
676
677
678
679
680
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat  nat  PROP) y :
  ([ map] x  i  m, Φ y x) - ([ map] x  i  m, emp  Φ y x).
Proof.
  iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
  - by rewrite !big_sepM_empty.
  - rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
    by iApply "IH".
Qed.

681
Lemma test_iIntros_start_proof :
Gregory Malecha's avatar
Gregory Malecha committed
682
  @{PROP} True.
683
684
685
686
687
Proof.
  (* Make sure iIntros actually makes progress and enters the proofmode. *)
  progress iIntros. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
688
Lemma test_True_intros : (True : PROP) - True.
689
690
691
Proof.
  iIntros "?". done.
Qed.
692
693
694
695
696
697
698
699
700
701

Lemma test_iPoseProof_let P Q :
  (let R := True%I in R  P  Q) 
  P  Q.
Proof.
  iIntros (help) "HP".
  iPoseProof (help with "[$HP]") as "?". done.
Qed.

Lemma test_iIntros_let P :
Robbert Krebbers's avatar
Robbert Krebbers committed
702
703
   Q, let R := emp%I in P - R - Q - P  Q.
Proof. iIntros (Q R) "$ _ $". Qed.
704

705
706
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
707
Proof.
708
  iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
709
710
Qed.

711
Lemma test_iIntros_modalities `{!BiPersistentlyForall PROP} `(!Absorbing P) :
Gregory Malecha's avatar
Gregory Malecha committed
712
   <pers> (   x : nat,  x = 0    x = 0  - False - P - P).
713
714
715
716
717
Proof.
  iIntros (x ??).
  iIntros "* **". (* Test that fast intros do not work under modalities *)
  iIntros ([]).
Qed.
718

719
720
721
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
  x1 = x2  ( x2 = x3    x3  x4   P) -  x1 = x4   P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
722

723
724
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
725
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
726

727
Lemma test_iAlways P Q R :
728
   P - <pers> Q  R - <pers> <affine> <affine> P   Q.
Ralf Jung's avatar
Ralf Jung committed
729
730
731
732
733
Proof.
  iIntros "#HP #HQ HR". iSplitL.
  - iModIntro. done.
  - iModIntro. done.
Qed.
734

Robbert Krebbers's avatar
Robbert Krebbers committed
735
736
737
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
738
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
739
740
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
741
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
742
743
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
744
  φ  ( _ : φ, False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
745
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
746
Lemma test_forall_nondep_4 (φ : Prop) :
747
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
748
749
750
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.

Lemma test_pure_impl_1 (φ : Prop) :
751
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
753
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
754
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
755
756
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
757
  φ  (⌜φ⌝  False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
758
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
759
Lemma test_pure_impl_4 (φ : Prop) :
760
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
762
763
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.

Lemma test_forall_nondep_impl2 (φ : Prop) P :
764
  φ  P - ( _ : φ, P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
765
766
767
768
769
770
771
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

Lemma test_pure_impl2 (φ : Prop) P :
772
  φ  P - (⌜φ⌝  P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
773
774
775
776
777
778
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

779
780
781
782
783
Lemma demo_laterN_forall {A} (Φ Ψ: A  PROP) n: ( x, ^n Φ x) - ^n ( x, Φ x).
Proof.
  iIntros "H" (w). iApply ("H" $! w).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
784
Lemma test_iNext_laterN_later P n :  ^n P - ^n  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
785
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
786
Lemma test_iNext_later_laterN P n : ^n  P -  ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
787
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
788
Lemma test_iNext_plus_1 P n1 n2 :  ^n1 ^n2 P - ^n1 ^n2  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
789
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
790
791
Lemma test_iNext_plus_2 P n m : ^n ^m P - ^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
792
Check "test_iNext_plus_3".
Robbert Krebbers's avatar
Robbert Krebbers committed
793
794
Lemma test_iNext_plus_3 P Q n m k :
  ^m ^(2 + S n + k) P - ^m  ^(2 + S n) Q - ^k  ^(S (S n + S m)) (P  Q).
795
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
796

797
798
799
800
801
802
803
804
Lemma test_iNext_unfold P Q n m (R := (^n P)%I) :
  R  ^m True.
Proof.
  iIntros "HR". iNext.
  match goal with |-  context [ R ] => idtac | |- _ => fail end.
  done.
Qed.

805
806
807
Lemma test_iNext_fail P Q a b c d e f g h i j:
  ^(a + b) ^(c + d + e) P - ^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
808
809

Lemma test_specialize_affine_pure (φ : Prop) P :
810
  φ  (<affine> ⌜φ⌝ - P)  P.
811
812
813
814
815
Proof.
  iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.

Lemma test_assert_affine_pure (φ : Prop) P :
816
817
  φ  P  P  <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
818
819
Lemma test_assert_pure (φ : Prop) P :
  φ  P  P  ⌜φ⌝.
820
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
821

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
  φ 
  P - P2 -
  (<affine>  φ  - P2 - Q) -
  (P - Q - R1) -
  (R1 - True - R2) -
  R2.
Proof.
  iIntros (?) "HP HP2 HQ H1 H2".
  by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.

Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
   P1 -
   (P1 - P2) -
  (P2 - P2 - P3) -
  (P3 - P4) -
  (P4 - P5) -
  P5.
Proof.
  iIntros "#H #H1 H2 H3 H4".
  by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.

Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
  φ 
   P -  (P - Q) - (Q - Q - R2) - R2.
Proof.
  iIntros (?) "#HP #HQ HR".
  iSpecialize ("HR" with "(HQ HP) (HQ HP)").
  Show.
  done.
Qed.

Lemma test_specialize_intuitionistic P Q :
   P -  (P - Q) -  Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.

861
Lemma test_iEval x y :  (y + x)%nat = 1  -  S (x + y) = 2%nat  : PROP.
862
863
864
865
866
867
Proof.
  iIntros (H).
  iEval (rewrite (Nat.add_comm x y) // H).
  done.
Qed.

868
869
870
871
872
873
874
Lemma test_iEval_precedence : True  True : PROP.
Proof.
  iIntros.
  (* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
  iEval (rewrite /=); iPureIntro; exact I.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
875
876
877
878
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.

879
880
881
882
883
Lemma test_iSimpl_in_2 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.

884
885
886
887
888
Lemma test_iSimpl_in3 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.

Dan Frumin's avatar
Dan Frumin committed
889
890
891
892
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.

893
Lemma test_iPureIntro_absorbing (φ : Prop) :
Gregory Malecha's avatar
Gregory Malecha committed
894
  φ  @{PROP} <absorb> ⌜φ⌝.
895
896
Proof. intros ?. iPureIntro. done. Qed.

Ralf Jung's avatar
Ralf Jung committed
897
Check "test_iFrame_later_1".
898
Lemma test_iFrame_later_1 P Q : P   Q -  (P   Q).
899
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
900

Ralf Jung's avatar
Ralf Jung committed
901
Check "test_iFrame_later_2".
902
Lemma test_iFrame_later_2 P Q :  P   Q -  ( P   Q).
903
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
904
905
906
907
908

Lemma test_with_ident P Q R : P - Q - (P - Q - R) - R.
Proof.
  iIntros "? HQ H".
  iMatchHyp (fun H _ =>
909
    iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
910
Qed.
911
912

Lemma iFrame_with_evar_r P Q :
913
   R, (P - Q - P  R)  R = Q.
914
Proof.
Ralf Jung's avatar
Ralf Jung committed
915
916
917
  eexists. split.
  - iIntros "HP HQ". iFrame. iApply "HQ".
  - done.
918
919
Qed.
Lemma iFrame_with_evar_l P Q :
920
   R, (P - Q - R  P)  R = Q.
921
Proof.
Ralf Jung's avatar
Ralf Jung committed
922
923
924
925
  eexists. split.
  - iIntros "HP HQ". Fail iFrame "HQ".
    iSplitR "HP"; iAssumption.
  - done.
926
Qed.
927
928
929
Lemma iFrame_with_evar_persistent P Q :
   R, (P -  Q - P  R  Q)  R = emp%I.
Proof.
Ralf Jung's avatar
Ralf Jung committed
930
931
932
  eexists. split.
  - iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro.
  - done.
933
934
Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
935
936
937
Lemma test_iAccu P Q R S :
   PP, (P - Q - R - S - PP)  PP =<