proofmode.v 50.9 KB
Newer Older
1
From iris.bi Require Import laterable.
2
From iris.proofmode Require Import tactics intro_patterns.
Ralf Jung's avatar
Ralf Jung committed
3
From iris.prelude Require Import options.
Robbert Krebbers's avatar
Robbert Krebbers committed
4

5
6
Unset Mangle Names.

Ralf Jung's avatar
Ralf Jung committed
7
Section tests.
8
Context {PROP : bi}.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Implicit Types P Q R : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
12
13
Lemma test_eauto_emp_isplit_biwand P : emp  P - P.
Proof. eauto 6. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
14
Lemma test_eauto_isplit_biwand P :  P - P.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
15
Proof. eauto. Qed.
16

Gregory Malecha's avatar
Gregory Malecha committed
17
Fixpoint test_fixpoint (n : nat) {struct n} : True  emp @{PROP}  (n + 0)%nat = n .
18
19
20
21
22
23
Proof.
  case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
  iIntros (_) "_".
  by iDestruct (test_fixpoint with "[//]") as %->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
24
Check "demo_0".
25
26
Lemma demo_0 `{!BiPersistentlyForall PROP} P Q :
   (P  Q) - ( x, x = 0  x = 1)  (Q  P).
27
Proof.
28
  iIntros "H #H2". Show. iDestruct "H" as "###H".
29
  (* should remove the disjunction "H" *)
30
  iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
31
  (* should keep the disjunction "H" because it is instantiated *)
Ralf Jung's avatar
Ralf Jung committed
32
  iDestruct ("H2" $! 10) as "[%|%]"; done.
33
34
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat  PROP) `{!Affine P4, !Absorbing P2} :
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  emp -
37
38
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
39
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
43
44
45
46
47
48
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
Robbert Krebbers's avatar
Robbert Krebbers committed
49
  - iFrame "H3". iRight. auto.
Ralf Jung's avatar
Ralf Jung committed
50
  - iSplitL "HQ"; first iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
51
52
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
53
Lemma demo_3 P1 P2 P3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
54
55
  P1  P2  P3 - P1   (P2   x, (P3  x = 0)  P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
56

57
58
59
60
61
62
63
64
Lemma test_pure_space_separated P1 :
  <affine> True  P1 - P1.
Proof.
  (* [% H] should be parsed as two separate patterns and not the pure name
  [H] *)
  iIntros "[% H] //".
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
65
66
Definition foo (P : PROP) := (P - P)%I.
Definition bar : PROP := ( P, foo P)%I.
67

Gregory Malecha's avatar
Gregory Malecha committed
68
Lemma test_unfold_constants :  bar.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Proof. iIntros (P) "HP //". Qed.
70

Ralf Jung's avatar
Ralf Jung committed
71
Check "test_iStopProof".
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Lemma test_iStopProof Q : emp - Q - Q.
Ralf Jung's avatar
Ralf Jung committed
73
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofe} (x y : A) P :
76
   ( z, P - <affine> (z  y)) - (P - P  (x,x)  (y,x)).
77
Proof.
78
  iIntros "#H1 H2".
79
  iRewrite (internal_eq_sym x x with "[# //]").
80
  iRewrite -("H1" $! _ with "[- //]").
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  auto.
82
83
Qed.

Ralf Jung's avatar
Ralf Jung committed
84
Check "test_iDestruct_and_emp".
85
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
86
  P  emp - emp  Q - <affine> (P  Q).
Ralf Jung's avatar
Ralf Jung committed
87
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
88

Gregory Malecha's avatar
Gregory Malecha committed
89
Lemma test_iIntros_persistent P Q `{!Persistent Q} :  (P  Q  P  Q).
90
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
96
97
98
99
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
  Q   (Q - P) - P  Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
  Q  (Q - P) - P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
Lemma test_iDestruct_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iDestruct] does not consume "HQP" because a wand is instantiated *)
  iDestruct ("HQP" with "HQ1") as "HP1".
  iDestruct ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.
Lemma test_iPoseProof_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iPoseProof] does not consume "HQP" because a wand is instantiated *)
  iPoseProof ("HQP" with "HQ1") as "HP1".
  iPoseProof ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.

Lemma test_iDestruct_pose_forall (Φ : nat  PROP) :
   ( x, Φ x) - Φ 0  Φ 1.
Proof.
  iIntros "#H".
  (* [iDestruct] does not consume "H" because quantifiers are instantiated *)
  iDestruct ("H" $! 0) as "$".
  iDestruct ("H" $! 1) as "$".
Qed.

Lemma test_iDestruct_or P Q :  (P  Q) - Q  P.
Proof.
  iIntros "#H".
  (* [iDestruct] consumes "H" because no quantifiers/wands are instantiated *)
  iDestruct "H" as "[H|H]".
  - by iRight.
  - by iLeft.
Qed.
Lemma test_iPoseProof_or P Q :  (P  Q) - (Q  P)  (P  Q).
Proof.
  iIntros "#H".
  (* [iPoseProof] does not consume "H" despite that no quantifiers/wands are
  instantiated. This makes it different from [iDestruct]. *)
  iPoseProof "H" as "[HP|HQ]".
  - iFrame "H". by iRight.
  - iFrame "H". by iLeft.
Qed.

146
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
149
  Q  (Q - P) - P  Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q :  Q - Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.

Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} :  Q - Q.
Proof.
  iIntros "#-#HQ".
  (* Since [Q] is affine, it should not add an <affine> modality *)
  Show. done.
Qed.

Lemma test_iDestruct_spatial_noop Q : Q - Q.
Proof. iIntros "-#HQ". done. Qed.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
Lemma test_iDestruct_exists (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof. iIntros "H". iDestruct "H" as (y) "H". by iExists y. Qed.

Lemma test_iDestruct_exists_automatic (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name should by [y] *)
  by iExists y.
Qed.

Lemma test_iDestruct_exists_automatic_multiple (Φ: nat  PROP) :
  ( y n baz, Φ (y+n+baz)) -  n, Φ n.
Proof. iDestruct 1 as (???) "H". by iExists (y+n+baz). Qed.

Lemma test_iDestruct_exists_freshen (y:nat) (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name is the freshened form of [y] *)
  by iExists y0.
Qed.

Check "test_iDestruct_exists_not_exists".
Lemma test_iDestruct_exists_not_exists P :
  P - P.
Proof. Fail iDestruct 1 as (?) "H". Abort.

Lemma test_iDestruct_exists_explicit_name (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  (* give an explicit name that isn't the binder name *)
  iDestruct 1 as (foo) "?".
  by iExists foo.
Qed.

Lemma test_iDestruct_exists_pure (Φ: nat  Prop) :
   y, Φ y @{PROP}  n, ⌜Φ n.
Proof.
  iDestruct 1 as (?) "H".
  by iExists y.
Qed.

Lemma test_iDestruct_exists_and_pure (H: True) P :
  False  P - False.
Proof.
  (* this automatic name uses [fresh H] as a sensible default (it's a hypothesis
  in [Prop] and the user cannot supply a name in their code) *)
  iDestruct 1 as (?) "H".
  contradict H0.
Qed.

Check "test_iDestruct_exists_intuitionistic".
Lemma test_iDestruct_exists_intuitionistic P (Φ: nat  PROP) :
   ( y, Φ y  P) - P.
Proof.
  iDestruct 1 as (?) "#H". Show.
  iDestruct "H" as "[_ $]".
Qed.

Lemma test_iDestruct_exists_freshen_local_name (Φ: nat  PROP) :
  let y := 0 in
   ( y, Φ y) -  n, Φ (y+n).
Proof.
  iIntros (y) "#H".
  iDestruct "H" as (?) "H".
  iExists y0; auto.
Qed.

237
238
239
240
241
242
243
244
245
246
247
248
(* regression test for #337 *)
Check "test_iDestruct_exists_anonymous".
Lemma test_iDestruct_exists_anonymous P Φ :
  ( _:nat, P)  ( x:nat, Φ x) - P   x, Φ x.
Proof.
  iIntros "[HP HΦ]".
  (* this should not use [x] as the default name for the unnamed binder *)
  iDestruct "HP" as (?) "$". Show.
  iDestruct "HΦ" as (x) "HΦ".
  by iExists x.
Qed.

249
250
251
252
253
254
255
Definition an_exists P : PROP := ( (an_exists_name:nat), ^an_exists_name P)%I.

(* should use the name from within [an_exists] *)
Lemma test_iDestruct_exists_automatic_def P :
  an_exists P -  k, ^k P.
Proof. iDestruct 1 as (?) "H". by iExists an_exists_name. Qed.

256
(* use an Iris intro pattern [% H] rather than (?) to indicate iExistDestruct *)
257
258
259
260
261
262
263
264
Lemma test_exists_intro_pattern_anonymous P (Φ: nat  PROP) :
  P  ( y:nat, Φ y) -  x, P  Φ x.
Proof.
  iIntros "[HP1 [% HP2]]".
  iExists y.
  iFrame "HP1 HP2".
Qed.

Gregory Malecha's avatar
Gregory Malecha committed
265
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ    φ   P   φ  ψ   P.
266
267
Proof. iIntros (??) "H". auto. Qed.

268
269
270
271
272
273
274
275
276
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat  PROP) :
    x : nat, Ψ x  Ψ x.
Proof.
  iIntros "%".
  (* should be a trivial implication now *)
  Show. auto.
Qed.

277
Lemma test_iIntros_pure_not `{!BiPureForall PROP} : @{PROP}  ¬False .
278
279
Proof. by iIntros (?). Qed.

280
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
Gregory Malecha's avatar
Gregory Malecha committed
281
282
    x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x).
283
Proof.
284
  iIntros (a) "*".
285
  iIntros "#Hfoo **".
Robbert Krebbers's avatar
Robbert Krebbers committed
286
  iIntros "_ //".
287
Qed.
288

289
Lemma test_very_fast_iIntros P :
Gregory Malecha's avatar
Gregory Malecha committed
290
   x y : nat,   x = y   P - P.
291
292
Proof. by iIntros. Qed.

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
Lemma test_iIntros_automatic_name (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros (?) "H". by iExists y. Qed.

Lemma test_iIntros_automatic_name_proofmode_intro (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

(* even an object-level forall should get the right name *)
Lemma test_iIntros_object_forall P :
  P -  (y:unit), P.
Proof. iIntros "H". iIntros (?). destruct y. iAssumption. Qed.

Lemma test_iIntros_object_proofmode_intro (Φ: nat  PROP) :
    y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

Check "test_iIntros_pure_names".
Lemma test_iIntros_pure_names (H:True) P :
   x y : nat,   x = y   P - P.
Proof.
  iIntros (???).
  (* the pure hypothesis should get a sensible [H0] as its name *)
  Show. auto.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
319
Definition tc_opaque_test : PROP := tc_opaque ( x : nat,  x = x )%I.
Gregory Malecha's avatar
Gregory Malecha committed
320
Lemma test_iIntros_tc_opaque :  tc_opaque_test.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
Proof. by iIntros (x). Qed.
322

Robbert Krebbers's avatar
Robbert Krebbers committed
323
324
(** Prior to 0b84351c this used to loop, now [iAssumption] instantiates [R] with
[False] and performs false elimination. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
325
326
327
Lemma test_iAssumption_evar_ex_false :  R, R   P, P.
Proof. eexists. iIntros "?" (P). iAssumption. Qed.

328
329
330
Lemma test_iApply_evar P Q R : ( Q, Q - P) - R - P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.

331
332
333
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P - Q - R - Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.

334
335
336
Lemma test_done_goal_evar Q :  P, Q  P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
337
Lemma test_iDestruct_spatial_and P Q1 Q2 : P  (Q1  Q2) - P  Q1.
338
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339

Robbert Krebbers's avatar
Robbert Krebbers committed
340
Lemma test_iAssert_persistent P Q : P - Q - True.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
349

350
351
352
353
354
Lemma test_iAssert_persistently P :  P - True.
Proof.
  iIntros "HP". iAssert ( P)%I with "[# //]" as "#H". done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
355
Lemma test_iSpecialize_auto_frame P Q R :
356
  (P - True - True - Q - R) - P - Q - R.
357
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
358

Gregory Malecha's avatar
Gregory Malecha committed
359
360
Lemma test_iSpecialize_pure (φ : Prop) Q R :
  φ  (⌜φ⌝ - Q)   Q.
Ralf Jung's avatar
Ralf Jung committed
361
362
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
  φ  (⌜φ⌝ - Q)  Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
  (⌜φ⌝ - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.

Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.

382
Lemma test_iSpecialize_Coq_entailment P Q R :
Gregory Malecha's avatar
Gregory Malecha committed
383
  ( P)  (P - Q)  ( Q).
384
385
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
Lemma test_iSpecialize_intuitionistic P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP").
  iSpecialize ("H" with "[HP]"); first done.
  iSpecialize ("H" with "[]"); first done.
  iSpecialize ("H" with "[-HR]"); first done.
  iSpecialize ("H" with "[#]"); first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]"); first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_2 P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP") as #.
  iSpecialize ("H" with "[HP]") as #; first done.
  iSpecialize ("H" with "[]") as #; first done.
  iSpecialize ("H" with "[-HR]") as #; first done.
  iSpecialize ("H" with "[#]") as #; first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]") as #; first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_3 P Q R :
  P -  (P - Q) -  (P - <pers> Q) -  (Q - R) - P   (Q  R).
Proof.
  iIntros "HP #H1 #H2 #H3".
  (* Should fail, [Q] is not persistent *)
  Fail iSpecialize ("H1" with "HP") as #.
  (* Should succeed, [<pers> Q] is persistent *)
  iSpecialize ("H2" with "HP") as #.
  (* Should succeed, despite [R] not being persistent, no spatial premises are
  needed to prove [Q] *)
  iSpecialize ("H3" with "H2") as #.
  by iFrame "#".
Qed.

Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
   P -  |==> P.
Proof.
  iIntros "#HP".
  (* Test that [HPupd1] ends up in the intuitionistic context *)
  iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
  (* This should not work, [|==> P] is not persistent. *)
  Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
  done.
Qed.

442
443
444
Lemma test_iSpecialize_evar P : ( R, R - R) - P - P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.

445
446
447
448
Lemma test_iPure_intro_emp R `{!Affine R} :
  R - emp.
Proof. iIntros "HR". by iPureIntro. Qed.

449
450
451
452
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
  P - Q  R - emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.

453
454
455
456
457
458
459
Lemma test_iPure_intro (φ : nat  Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat  Prop) P Q R `{!Persistent Q} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.

460
461
(* Ensure that [% ...] works as a pattern when the left-hand side of and/sep is
pure. *)
Ralf Jung's avatar
Ralf Jung committed
462
Lemma test_pure_and_sep_destruct_affine `{!BiAffine PROP} (φ : Prop) P :
463
464
465
466
  ⌜φ⌝  (⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
467
Lemma test_pure_and_sep_destruct_1 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
468
469
470
471
  ⌜φ⌝  (<affine> ⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
472
Lemma test_pure_and_sep_destruct_2 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
473
474
475
476
  ⌜φ⌝  (⌜φ⌝  <absorb> P) - <absorb> P.
Proof.
  iIntros "[% [% $]]".
Qed.
477
478
479
480
481
482
483
484
(* Ensure that [% %] also works when the conjunction is *inside* ⌜...⌝ *)
Lemma test_pure_inner_and_destruct :
  False  True @{PROP} False.
Proof.
  iIntros "[% %]". done.
Qed.

(* Ensure that [% %] works as a pattern for an existential with a pure body. *)
485
Lemma test_exist_pure_destruct_1 :
486
487
488
489
  ( x,  x = 0 ) @{PROP} True.
Proof.
  iIntros "[% %]". done.
Qed.
490
491
492
493
494
495
496
(* Also test nested existentials where the type of the 2nd depends on the first
(which could cause trouble if we do things in the wrong order) *)
Lemma test_exist_pure_destruct_2 :
  ( x (_:x=0), True) @{PROP} True.
Proof.
  iIntros "(% & % & $)".
Qed.
497

Ralf Jung's avatar
Ralf Jung committed
498
Lemma test_fresh P Q:
499
500
501
502
503
  (P  Q) - (P  Q).
Proof.
  iIntros "H".
  let H1 := iFresh in
  let H2 := iFresh in
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
504
  let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
505
506
507
508
  iDestruct "H" as pat.
  iFrame.
Qed.

509
(* Test for issue #288 *)
510
Lemma test_iExists_unused :   P : PROP,  x : nat, P.
Robbert Krebbers's avatar
Robbert Krebbers committed
511
512
513
514
515
516
517
Proof.
  iExists _.
  iExists 10.
  iAssert emp%I as "H"; first done.
  iExact "H".
Qed.

518
(* Check coercions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Lemma test_iExist_coercion (P : Z  PROP) : ( x, P x) -  x, P x.
520
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
521

Gregory Malecha's avatar
Gregory Malecha committed
522
Lemma test_iExist_tc `{Set_ A C} P :   x1 x2 : gset positive, P - P.
523
524
525
Proof. iExists {[ 1%positive ]}, . auto. Qed.

Lemma test_iSpecialize_tc P : ( x y z : gset positive, P) - P.
526
527
Proof.
  iIntros "H".
Ralf Jung's avatar
Ralf Jung committed
528
  (* FIXME: this [unshelve] and [apply _] should not be needed. *)
529
530
  unshelve iSpecialize ("H" $!  {[ 1%positive ]} ); try apply _. done.
Qed.
531

532
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofe} (φ : Prop) (y z : A) :
533
  φ  <affine> y  z - ( φ    φ   y  z : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
534
535
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.

536
537
538
539
540
541
542
543
544
545
546
547
548
549
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
  BiAffine PROP 
   P1 - Q2 - P2 - (P1  P2  False  P2)  (Q1  Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P - (True  True)  P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.

Lemma test_iFrame_conjunction_1 P Q :
  P - Q - (P  Q)  (P  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
  P - Q - (P  P)  (Q  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.

550
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P - Q -  P  Q.
551
552
Proof. iIntros "H1 H2". by iFrame "H1". Qed.

553
554
Lemma test_iFrame_affinely_1 P Q `{!Affine P} :
  P - <affine> Q - <affine> (P  Q).
555
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
556
557
Lemma test_iFrame_affinely_2 P Q `{!Affine P, !Affine Q} :
  P - Q - <affine> (P  Q).
558
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
559

Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
Lemma test_iAssert_modality P :  False -  P.
Proof.
  iIntros "HF".
563
  iAssert (<affine> False)%I with "[> -]" as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
  by iMod "HF".
Qed.
566

567
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
568
  <affine>  P -  <affine> P.
569
570
Proof. iIntros "H". iMod "H". done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
571
Lemma test_iAssumption_False P : False - P.
572
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573

574
575
576
577
578
579
Lemma test_iAssumption_coq_1 P Q : ( Q)  <affine> P - Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Lemma test_iAssumption_coq_2 P Q : (  Q)  <affine> P -  Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
580
(* Check instantiation and dependent types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
581
Lemma test_iSpecialize_dependent_type (P :  n, vec nat n  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
582
583
584
585
586
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
587

588
589
590
591
592
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat  PROP) l x :
  x  l  ([ list] y  l, Φ y) - Φ x.
Proof.
  iIntros (Hp) "HT".
593
  iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
594
595
596
  done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
597
598
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R  False.
599
Proof. eauto 10 with iFrame. Qed.
600

601
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
Robbert Krebbers's avatar
Robbert Krebbers committed
602
  P - Q - R  R  Q  P  R  False.
603
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
604

605
606
607
608
Lemma test_iCombine_frame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
609
Lemma test_iNext_evar P : P - True.
Ralf Jung's avatar
Ralf Jung committed
610
611
612
613
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614

615
616
Lemma test_iNext_sep1 P Q (R1 := (P  Q)%I) :
  ( P   Q)  R1 -  ((P  Q)  R1).
Robbert Krebbers's avatar
Robbert Krebbers committed
617
618
619
620
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
621

Robbert Krebbers's avatar
Robbert Krebbers committed
622
Lemma test_iNext_sep2 P Q :  P   Q -  (P  Q).
623
624
625
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
626

Robbert Krebbers's avatar
Robbert Krebbers committed
627
Lemma test_iNext_quantifier {A} (Φ : A  A  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
  ( y,  x,  Φ x y) -  ( y,  x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.

631
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofe} (f : A -n> A) x y :
632
633
634
  Next x  Next y - (Next (f x)  Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
635
Lemma test_iFrame_persistent (P Q : PROP) :
636
   P - Q - <pers> (P  P)  (P  Q  Q).
637
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
638

639
Lemma test_iSplit_persistently P Q :  P - <pers> (P  P).
640
Proof. iIntros "#?". by iSplit. Qed.
Ralf Jung's avatar
Ralf Jung committed
641

642
Lemma test_iSpecialize_persistent P Q :  P - (<pers> P  Q) - Q.
643
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
644

645
Lemma test_iDestruct_persistent P (Φ : nat  PROP) `{! x, Persistent (Φ x)}:
646
   (P -  x, Φ x) -
647
648
649
650
651
  P -  x, Φ x  P.
Proof.
  iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.

652
Lemma test_iLöb `{!BiLöb PROP} P :   n, ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
653
654
655
656
Proof.
  iLöb as "IH". iDestruct "IH" as (n) "IH".
  by iExists (S n).
Qed.
657

658
Lemma test_iInduction_wf (x : nat) P Q :
659
   P - Q -  (x + 0 = x)%nat .
660
661
662
Proof.
  iIntros "#HP HQ".
  iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
663
  rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
664
665
Qed.

666
667
668
669
670
671
672
673
674
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat  nat  PROP) y :
  ([ map] x  i  m, Φ y x) - ([ map] x  i  m, emp  Φ y x).
Proof.
  iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
  - by rewrite !big_sepM_empty.
  - rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
    by iApply "IH".
Qed.

675
Lemma test_iIntros_start_proof :
Gregory Malecha's avatar
Gregory Malecha committed
676
  @{PROP} True.
677
678
679
680
681
Proof.
  (* Make sure iIntros actually makes progress and enters the proofmode. *)
  progress iIntros. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
682
Lemma test_True_intros : (True : PROP) - True.
683
684
685
Proof.
  iIntros "?". done.
Qed.
686
687
688
689
690
691
692
693
694
695

Lemma test_iPoseProof_let P Q :
  (let R := True%I in R  P  Q) 
  P  Q.
Proof.
  iIntros (help) "HP".
  iPoseProof (help with "[$HP]") as "?". done.
Qed.

Lemma test_iIntros_let P :
Robbert Krebbers's avatar
Robbert Krebbers committed
696
697
   Q, let R := emp%I in P - R - Q - P  Q.
Proof. iIntros (Q R) "$ _ $". Qed.
698

699
700
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
701
Proof.
702
  iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
703
704
Qed.

705
Lemma test_iIntros_modalities `{!BiPersistentlyForall PROP} `(!Absorbing P) :
Gregory Malecha's avatar
Gregory Malecha committed
706
   <pers> (   x : nat,  x = 0    x = 0  - False - P - P).
707
708
709
710
711
Proof.
  iIntros (x ??).
  iIntros "* **". (* Test that fast intros do not work under modalities *)
  iIntros ([]).
Qed.
712

713
714
715
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
  x1 = x2  ( x2 = x3    x3  x4   P) -  x1 = x4   P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
716

717
718
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
719
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
720

721
Lemma test_iAlways P Q R :
722
   P - <pers> Q  R - <pers> <affine> <affine> P   Q.
Ralf Jung's avatar
Ralf Jung committed
723
724
725
726
727
Proof.
  iIntros "#HP #HQ HR". iSplitL.
  - iModIntro. done.
  - iModIntro. done.
Qed.
728

Robbert Krebbers's avatar
Robbert Krebbers committed
729
730
731
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
732
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
733
734
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
735
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
736
737
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
738
  φ  ( _ : φ, False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
739
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
740
Lemma test_forall_nondep_4 (φ : Prop) :
741
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
742
743
744
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.

Lemma test_pure_impl_1 (φ : Prop) :
745
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
748
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
749
750
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
751
  φ  (⌜φ⌝  False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
752
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
753
Lemma test_pure_impl_4 (φ : Prop) :
754
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
755
756
757
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.

Lemma test_forall_nondep_impl2 (φ : Prop) P :
758
  φ  P - ( _ : φ, P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
759
760
761
762
763
764
765
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

Lemma test_pure_impl2 (φ : Prop) P :
766
  φ  P - (⌜φ⌝  P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
767
768
769
770
771
772
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

773
774
775
776
777
Lemma demo_laterN_forall {A} (Φ Ψ: A  PROP) n: ( x, ^n Φ x) - ^n ( x, Φ x).
Proof.
  iIntros "H" (w). iApply ("H" $! w).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
778
Lemma test_iNext_laterN_later P n :  ^n P - ^n  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
779
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
780
Lemma test_iNext_later_laterN P n : ^n  P -  ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
781
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
782
Lemma test_iNext_plus_1 P n1 n2 :  ^n1 ^n2 P - ^n1 ^n2  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
783
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
784
785
Lemma test_iNext_plus_2 P n m : ^n ^m P - ^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
786
Check "test_iNext_plus_3".
Robbert Krebbers's avatar
Robbert Krebbers committed
787
788
Lemma test_iNext_plus_3 P Q n m k :
  ^m ^(2 + S n + k) P - ^m  ^(2 + S n) Q - ^k  ^(S (S n + S m)) (P  Q).
789
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
790

791
792
793
794
795
796
797
798
Lemma test_iNext_unfold P Q n m (R := (^n P)%I) :
  R  ^m True.
Proof.
  iIntros "HR". iNext.
  match goal with |-  context [ R ] => idtac | |- _ => fail end.
  done.
Qed.

799
800
801
Lemma test_iNext_fail P Q a b c d e f g h i j:
  ^(a + b) ^(c + d + e) P - ^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
802
803

Lemma test_specialize_affine_pure (φ : Prop) P :
804
  φ  (<affine> ⌜φ⌝ - P)  P.
805
806
807
808
809
Proof.
  iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.

Lemma test_assert_affine_pure (φ : Prop) P :
810
811
  φ  P  P  <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
812
813
Lemma test_assert_pure (φ : Prop) P :
  φ  P  P  ⌜φ⌝.
814
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
815

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
  φ 
  P - P2 -
  (<affine>  φ  - P2 - Q) -
  (P - Q - R1) -
  (R1 - True - R2) -
  R2.
Proof.
  iIntros (?) "HP HP2 HQ H1 H2".
  by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.

Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
   P1 -
   (P1 - P2) -
  (P2 - P2 - P3) -
  (P3 - P4) -
  (P4 - P5) -
  P5.
Proof.
  iIntros "#H #H1 H2 H3 H4".
  by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.

Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
  φ 
   P -  (P - Q) - (Q - Q - R2) - R2.
Proof.
  iIntros (?) "#HP #HQ HR".
  iSpecialize ("HR" with "(HQ HP) (HQ HP)").
  Show.
  done.
Qed.

Lemma test_specialize_intuitionistic P Q :
   P -  (P - Q) -  Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.

855
Lemma test_iEval x y :  (y + x)%nat = 1  -  S (x + y) = 2%nat  : PROP.
856
857
858
859
860
861
Proof.
  iIntros (H).
  iEval (rewrite (Nat.add_comm x y) // H).
  done.
Qed.

862
863
864
865
866
867
868
Lemma test_iEval_precedence : True  True : PROP.
Proof.
  iIntros.
  (* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
  iEval (rewrite /=); iPureIntro; exact I.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
869
870
871
872
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.

873
874
875
876
877
Lemma test_iSimpl_in_2 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.

878
879
880
881
882
Lemma test_iSimpl_in3 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.

Dan Frumin's avatar
Dan Frumin committed
883
884
885
886
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.

887
Lemma test_iPureIntro_absorbing (φ : Prop) :
Gregory Malecha's avatar
Gregory Malecha committed
888
  φ  @{PROP} <absorb> ⌜φ⌝.
889
890
Proof. intros ?. iPureIntro. done. Qed.

Ralf Jung's avatar
Ralf Jung committed
891
Check "test_iFrame_later_1".
892
Lemma test_iFrame_later_1 P Q : P   Q -  (P   Q).
893
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
894

Ralf Jung's avatar
Ralf Jung committed
895
Check "test_iFrame_later_2".
896
Lemma test_iFrame_later_2 P Q :  P   Q -  ( P   Q).
897
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
898
899
900
901
902

Lemma test_with_ident P Q R : P - Q - (P - Q - R) - R.
Proof.
  iIntros "? HQ H".
  iMatchHyp (fun H _ =>
903
    iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
904
Qed.
905
906

Lemma iFrame_with_evar_r P Q :
907
   R, (P - Q - P  R)  R = Q.
908
Proof.
Ralf Jung's avatar
Ralf Jung committed
909
910
911
  eexists. split.
  - iIntros "HP HQ". iFrame. iApply "HQ".
  - done.
912
913
Qed.
Lemma iFrame_with_evar_l P Q :
914
   R, (P - Q - R  P)  R = Q.
915
Proof.
Ralf Jung's avatar
Ralf Jung committed
916
917
918
919
  eexists. split.
  - iIntros "HP HQ". Fail iFrame "HQ".
    iSplitR "HP"; iAssumption.
  - done.
920
Qed.
921
922
923
Lemma iFrame_with_evar_persistent P Q :
   R, (P -  Q - P  R  Q)  R = emp%I.
Proof.
Ralf Jung's avatar
Ralf Jung committed
924
925
926
  eexists. split.
  - iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro.
  - done.
927
928
Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
929
930
931
Lemma test_iAccu P Q R S :
   PP, (P - Q - R - S - PP)  PP = (Q  R  S)%I.
Proof.
Ralf Jung's avatar
Ralf Jung committed
932
933
934
  eexists. split.
  - iIntros "#? ? ? ?". iAccu.
  - done.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
935
936
Qed.

Ralf Jung's avatar
Ralf Jung committed
937
Lemma test_iAssumption_evar P