proofmode.v 55.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Import gmap.
2
From iris.bi Require Import laterable.
3
From iris.proofmode Require Import tactics intro_patterns.
Ralf Jung's avatar
Ralf Jung committed
4
From iris.prelude Require Import options.
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
7
Unset Mangle Names.

Ralf Jung's avatar
Ralf Jung committed
8
Section tests.
9
Context {PROP : bi}.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Implicit Types P Q R : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
13
14
Lemma test_eauto_emp_isplit_biwand P : emp  P - P.
Proof. eauto 6. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
15
Lemma test_eauto_isplit_biwand P :  P - P.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
16
Proof. eauto. Qed.
17

Gregory Malecha's avatar
Gregory Malecha committed
18
Fixpoint test_fixpoint (n : nat) {struct n} : True  emp @{PROP}  (n + 0)%nat = n .
19
20
21
22
23
24
Proof.
  case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
  iIntros (_) "_".
  by iDestruct (test_fixpoint with "[//]") as %->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
25
Check "demo_0".
26
27
Lemma demo_0 `{!BiPersistentlyForall PROP} P Q :
   (P  Q) - ( x, x = 0  x = 1)  (Q  P).
28
Proof.
29
  iIntros "H #H2". Show. iDestruct "H" as "###H".
30
  (* should remove the disjunction "H" *)
31
  iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
32
  (* should keep the disjunction "H" because it is instantiated *)
Ralf Jung's avatar
Ralf Jung committed
33
  iDestruct ("H2" $! 10) as "[%|%]"; done.
34
35
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
36
37
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat  PROP) `{!Affine P4, !Absorbing P2} :
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  emp -
38
39
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
40
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
44
45
46
47
48
49
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
Robbert Krebbers's avatar
Robbert Krebbers committed
50
  - iFrame "H3". iRight. auto.
Ralf Jung's avatar
Ralf Jung committed
51
  - iSplitL "HQ"; first iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
54
Lemma demo_3 P1 P2 P3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
  P1  P2  P3 - P1   (P2   x, (P3  x = 0)  P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
57

58
59
60
61
62
63
64
65
Lemma test_pure_space_separated P1 :
  <affine> True  P1 - P1.
Proof.
  (* [% H] should be parsed as two separate patterns and not the pure name
  [H] *)
  iIntros "[% H] //".
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
66
67
Definition foo (P : PROP) := (P - P)%I.
Definition bar : PROP := ( P, foo P)%I.
68

Gregory Malecha's avatar
Gregory Malecha committed
69
Lemma test_unfold_constants :  bar.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof. iIntros (P) "HP //". Qed.
71

Ralf Jung's avatar
Ralf Jung committed
72
Check "test_iStopProof".
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Lemma test_iStopProof Q : emp - Q - Q.
Ralf Jung's avatar
Ralf Jung committed
74
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofe} (x y : A) P :
77
   ( z, P - <affine> (z  y)) - (P - P  (x,x)  (y,x)).
78
Proof.
79
  iIntros "#H1 H2".
80
  iRewrite (internal_eq_sym x x with "[# //]").
81
  iRewrite -("H1" $! _ with "[- //]").
Robbert Krebbers's avatar
Robbert Krebbers committed
82
  auto.
83
84
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
85
Lemma test_iRewrite_dom `{!BiInternalEq PROP} {A : ofe} (m1 m2 : gmap nat A) :
86
  m1  m2 @{PROP}  dom m1 = dom m2 .
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
Proof. iIntros "H". by iRewrite "H". Qed.

Ralf Jung's avatar
Ralf Jung committed
89
Check "test_iDestruct_and_emp".
90
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
91
  P  emp - emp  Q - <affine> (P  Q).
Ralf Jung's avatar
Ralf Jung committed
92
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
93

Gregory Malecha's avatar
Gregory Malecha committed
94
Lemma test_iIntros_persistent P Q `{!Persistent Q} :  (P  Q  P  Q).
95
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
99
100
101
102
103
104
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
  Q   (Q - P) - P  Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
  Q  (Q - P) - P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Lemma test_iDestruct_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iDestruct] does not consume "HQP" because a wand is instantiated *)
  iDestruct ("HQP" with "HQ1") as "HP1".
  iDestruct ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.
Lemma test_iPoseProof_specialize_wand P Q :
  Q - Q -  (Q - P) - P  P.
Proof.
  iIntros "HQ1 HQ2 #HQP".
  (* [iPoseProof] does not consume "HQP" because a wand is instantiated *)
  iPoseProof ("HQP" with "HQ1") as "HP1".
  iPoseProof ("HQP" with "HQ2") as "HP2".
  iFrame.
Qed.

Lemma test_iDestruct_pose_forall (Φ : nat  PROP) :
   ( x, Φ x) - Φ 0  Φ 1.
Proof.
  iIntros "#H".
  (* [iDestruct] does not consume "H" because quantifiers are instantiated *)
  iDestruct ("H" $! 0) as "$".
  iDestruct ("H" $! 1) as "$".
Qed.

Lemma test_iDestruct_or P Q :  (P  Q) - Q  P.
Proof.
  iIntros "#H".
  (* [iDestruct] consumes "H" because no quantifiers/wands are instantiated *)
  iDestruct "H" as "[H|H]".
  - by iRight.
  - by iLeft.
Qed.
Lemma test_iPoseProof_or P Q :  (P  Q) - (Q  P)  (P  Q).
Proof.
  iIntros "#H".
  (* [iPoseProof] does not consume "H" despite that no quantifiers/wands are
  instantiated. This makes it different from [iDestruct]. *)
  iPoseProof "H" as "[HP|HQ]".
  - iFrame "H". by iRight.
  - iFrame "H". by iLeft.
Qed.

151
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Robbert Krebbers's avatar
Robbert Krebbers committed
152
153
154
  Q  (Q - P) - P  Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q :  Q - Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.

Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} :  Q - Q.
Proof.
  iIntros "#-#HQ".
  (* Since [Q] is affine, it should not add an <affine> modality *)
  Show. done.
Qed.

Lemma test_iDestruct_spatial_noop Q : Q - Q.
Proof. iIntros "-#HQ". done. Qed.

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
Lemma test_iDestruct_exists (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof. iIntros "H". iDestruct "H" as (y) "H". by iExists y. Qed.

Lemma test_iDestruct_exists_automatic (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name should by [y] *)
  by iExists y.
Qed.

Lemma test_iDestruct_exists_automatic_multiple (Φ: nat  PROP) :
  ( y n baz, Φ (y+n+baz)) -  n, Φ n.
Proof. iDestruct 1 as (???) "H". by iExists (y+n+baz). Qed.

Lemma test_iDestruct_exists_freshen (y:nat) (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  iIntros "H".
  iDestruct "H" as (?) "H".
  (* the automatic name is the freshened form of [y] *)
  by iExists y0.
Qed.

Check "test_iDestruct_exists_not_exists".
Lemma test_iDestruct_exists_not_exists P :
  P - P.
Proof. Fail iDestruct 1 as (?) "H". Abort.

Lemma test_iDestruct_exists_explicit_name (Φ: nat  PROP) :
  ( y, Φ y) -  n, Φ n.
Proof.
  (* give an explicit name that isn't the binder name *)
  iDestruct 1 as (foo) "?".
  by iExists foo.
Qed.

Lemma test_iDestruct_exists_pure (Φ: nat  Prop) :
   y, Φ y @{PROP}  n, ⌜Φ n.
Proof.
  iDestruct 1 as (?) "H".
  by iExists y.
Qed.

Lemma test_iDestruct_exists_and_pure (H: True) P :
  False  P - False.
Proof.
  (* this automatic name uses [fresh H] as a sensible default (it's a hypothesis
  in [Prop] and the user cannot supply a name in their code) *)
  iDestruct 1 as (?) "H".
  contradict H0.
Qed.

Check "test_iDestruct_exists_intuitionistic".
Lemma test_iDestruct_exists_intuitionistic P (Φ: nat  PROP) :
   ( y, Φ y  P) - P.
Proof.
  iDestruct 1 as (?) "#H". Show.
  iDestruct "H" as "[_ $]".
Qed.

Lemma test_iDestruct_exists_freshen_local_name (Φ: nat  PROP) :
  let y := 0 in
   ( y, Φ y) -  n, Φ (y+n).
Proof.
  iIntros (y) "#H".
  iDestruct "H" as (?) "H".
  iExists y0; auto.
Qed.

242
243
244
245
246
247
248
249
250
251
252
253
(* regression test for #337 *)
Check "test_iDestruct_exists_anonymous".
Lemma test_iDestruct_exists_anonymous P Φ :
  ( _:nat, P)  ( x:nat, Φ x) - P   x, Φ x.
Proof.
  iIntros "[HP HΦ]".
  (* this should not use [x] as the default name for the unnamed binder *)
  iDestruct "HP" as (?) "$". Show.
  iDestruct "HΦ" as (x) "HΦ".
  by iExists x.
Qed.

254
255
256
257
258
259
260
Definition an_exists P : PROP := ( (an_exists_name:nat), ^an_exists_name P)%I.

(* should use the name from within [an_exists] *)
Lemma test_iDestruct_exists_automatic_def P :
  an_exists P -  k, ^k P.
Proof. iDestruct 1 as (?) "H". by iExists an_exists_name. Qed.

261
(* use an Iris intro pattern [% H] rather than (?) to indicate iExistDestruct *)
262
263
264
265
266
267
268
269
Lemma test_exists_intro_pattern_anonymous P (Φ: nat  PROP) :
  P  ( y:nat, Φ y) -  x, P  Φ x.
Proof.
  iIntros "[HP1 [% HP2]]".
  iExists y.
  iFrame "HP1 HP2".
Qed.

Gregory Malecha's avatar
Gregory Malecha committed
270
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ    φ   P   φ  ψ   P.
271
272
Proof. iIntros (??) "H". auto. Qed.

273
274
275
276
277
278
279
280
281
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat  PROP) :
    x : nat, Ψ x  Ψ x.
Proof.
  iIntros "%".
  (* should be a trivial implication now *)
  Show. auto.
Qed.

282
Lemma test_iIntros_pure_not `{!BiPureForall PROP} : @{PROP}  ¬False .
283
284
Proof. by iIntros (?). Qed.

285
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
Gregory Malecha's avatar
Gregory Malecha committed
286
287
    x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x).
288
Proof.
289
  iIntros (a) "*".
290
  iIntros "#Hfoo **".
Robbert Krebbers's avatar
Robbert Krebbers committed
291
  iIntros "_ //".
292
Qed.
293

294
Lemma test_very_fast_iIntros P :
Gregory Malecha's avatar
Gregory Malecha committed
295
   x y : nat,   x = y   P - P.
296
297
Proof. by iIntros. Qed.

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Lemma test_iIntros_automatic_name (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros (?) "H". by iExists y. Qed.

Lemma test_iIntros_automatic_name_proofmode_intro (Φ: nat  PROP) :
   y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

(* even an object-level forall should get the right name *)
Lemma test_iIntros_object_forall P :
  P -  (y:unit), P.
Proof. iIntros "H". iIntros (?). destruct y. iAssumption. Qed.

Lemma test_iIntros_object_proofmode_intro (Φ: nat  PROP) :
    y, Φ y -  x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.

Check "test_iIntros_pure_names".
Lemma test_iIntros_pure_names (H:True) P :
   x y : nat,   x = y   P - P.
Proof.
  iIntros (???).
  (* the pure hypothesis should get a sensible [H0] as its name *)
  Show. auto.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
324
Definition tc_opaque_test : PROP := tc_opaque ( x : nat,  x = x )%I.
Gregory Malecha's avatar
Gregory Malecha committed
325
Lemma test_iIntros_tc_opaque :  tc_opaque_test.
Robbert Krebbers's avatar
Robbert Krebbers committed
326
Proof. by iIntros (x). Qed.
327

328
329
330
Lemma test_iApply_evar P Q R : ( Q, Q - P) - R - P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.

331
332
333
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P - Q - R - Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.

334
335
336
Lemma test_done_goal_evar Q :  P, Q  P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
337
Lemma test_iDestruct_spatial_and P Q1 Q2 : P  (Q1  Q2) - P  Q1.
338
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339

Robbert Krebbers's avatar
Robbert Krebbers committed
340
Lemma test_iAssert_persistent P Q : P - Q - True.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
349

350
351
352
353
354
Lemma test_iAssert_persistently P :  P - True.
Proof.
  iIntros "HP". iAssert ( P)%I with "[# //]" as "#H". done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
355
Lemma test_iSpecialize_auto_frame P Q R :
356
  (P - True - True - Q - R) - P - Q - R.
357
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
358

Gregory Malecha's avatar
Gregory Malecha committed
359
360
Lemma test_iSpecialize_pure (φ : Prop) Q R :
  φ  (⌜φ⌝ - Q)   Q.
Ralf Jung's avatar
Ralf Jung committed
361
362
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
  φ  (⌜φ⌝ - Q)  Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
  (⌜φ⌝ - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.

Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.

382
Lemma test_iSpecialize_Coq_entailment P Q R :
Gregory Malecha's avatar
Gregory Malecha committed
383
  ( P)  (P - Q)  ( Q).
384
385
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
Lemma test_iSpecialize_intuitionistic P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP").
  iSpecialize ("H" with "[HP]"); first done.
  iSpecialize ("H" with "[]"); first done.
  iSpecialize ("H" with "[-HR]"); first done.
  iSpecialize ("H" with "[#]"); first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]"); first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_2 P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP") as #.
  iSpecialize ("H" with "[HP]") as #; first done.
  iSpecialize ("H" with "[]") as #; first done.
  iSpecialize ("H" with "[-HR]") as #; first done.
  iSpecialize ("H" with "[#]") as #; first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]") as #; first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_3 P Q R :
  P -  (P - Q) -  (P - <pers> Q) -  (Q - R) - P   (Q  R).
Proof.
  iIntros "HP #H1 #H2 #H3".
  (* Should fail, [Q] is not persistent *)
  Fail iSpecialize ("H1" with "HP") as #.
  (* Should succeed, [<pers> Q] is persistent *)
  iSpecialize ("H2" with "HP") as #.
  (* Should succeed, despite [R] not being persistent, no spatial premises are
  needed to prove [Q] *)
  iSpecialize ("H3" with "H2") as #.
  by iFrame "#".
Qed.

Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
   P -  |==> P.
Proof.
  iIntros "#HP".
  (* Test that [HPupd1] ends up in the intuitionistic context *)
  iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
  (* This should not work, [|==> P] is not persistent. *)
  Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
  done.
Qed.

442
443
444
Lemma test_iSpecialize_evar P : ( R, R - R) - P - P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.

445
446
447
448
Lemma test_iPure_intro_emp R `{!Affine R} :
  R - emp.
Proof. iIntros "HR". by iPureIntro. Qed.

449
450
451
452
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
  P - Q  R - emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.

453
454
455
456
457
458
459
Lemma test_iPure_intro (φ : nat  Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat  Prop) P Q R `{!Persistent Q} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.

460
461
(* Ensure that [% ...] works as a pattern when the left-hand side of and/sep is
pure. *)
Ralf Jung's avatar
Ralf Jung committed
462
Lemma test_pure_and_sep_destruct_affine `{!BiAffine PROP} (φ : Prop) P :
463
464
465
466
  ⌜φ⌝  (⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
467
Lemma test_pure_and_sep_destruct_1 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
468
469
470
471
  ⌜φ⌝  (<affine> ⌜φ⌝  P) - P.
Proof.
  iIntros "[% [% $]]".
Qed.
Ralf Jung's avatar
Ralf Jung committed
472
Lemma test_pure_and_sep_destruct_2 (φ : Prop) P :
Ralf Jung's avatar
Ralf Jung committed
473
474
475
476
  ⌜φ⌝  (⌜φ⌝  <absorb> P) - <absorb> P.
Proof.
  iIntros "[% [% $]]".
Qed.
477
478
479
480
481
482
483
484
(* Ensure that [% %] also works when the conjunction is *inside* ⌜...⌝ *)
Lemma test_pure_inner_and_destruct :
  False  True @{PROP} False.
Proof.
  iIntros "[% %]". done.
Qed.

(* Ensure that [% %] works as a pattern for an existential with a pure body. *)
485
Lemma test_exist_pure_destruct_1 :
486
487
488
489
  ( x,  x = 0 ) @{PROP} True.
Proof.
  iIntros "[% %]". done.
Qed.
490
491
492
493
494
495
496
(* Also test nested existentials where the type of the 2nd depends on the first
(which could cause trouble if we do things in the wrong order) *)
Lemma test_exist_pure_destruct_2 :
  ( x (_:x=0), True) @{PROP} True.
Proof.
  iIntros "(% & % & $)".
Qed.
497

Ralf Jung's avatar
Ralf Jung committed
498
Lemma test_fresh P Q:
499
500
501
502
503
  (P  Q) - (P  Q).
Proof.
  iIntros "H".
  let H1 := iFresh in
  let H2 := iFresh in
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
504
  let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
505
506
507
508
  iDestruct "H" as pat.
  iFrame.
Qed.

509
(* Test for issue #288 *)
510
Lemma test_iExists_unused :   P : PROP,  x : nat, P.
Robbert Krebbers's avatar
Robbert Krebbers committed
511
512
513
514
515
516
517
Proof.
  iExists _.
  iExists 10.
  iAssert emp%I as "H"; first done.
  iExact "H".
Qed.

518
(* Check coercions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Lemma test_iExist_coercion (P : Z  PROP) : ( x, P x) -  x, P x.
520
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
521

Gregory Malecha's avatar
Gregory Malecha committed
522
Lemma test_iExist_tc `{Set_ A C} P :   x1 x2 : gset positive, P - P.
523
524
525
Proof. iExists {[ 1%positive ]}, . auto. Qed.

Lemma test_iSpecialize_tc P : ( x y z : gset positive, P) - P.
526
527
Proof.
  iIntros "H".
Ralf Jung's avatar
Ralf Jung committed
528
  (* FIXME: this [unshelve] and [apply _] should not be needed. *)
529
530
  unshelve iSpecialize ("H" $!  {[ 1%positive ]} ); try apply _. done.
Qed.
531

532
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofe} (φ : Prop) (y z : A) :
533
  φ  <affine> y  z - ( φ    φ   y  z : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
534
535
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.

536
537
538
539
540
541
542
543
544
545
546
547
548
549
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
  BiAffine PROP 
   P1 - Q2 - P2 - (P1  P2  False  P2)  (Q1  Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P - (True  True)  P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.

Lemma test_iFrame_conjunction_1 P Q :
  P - Q - (P  Q)  (P  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
  P - Q - (P  P)  (Q  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.

550
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P - Q -  P  Q.
551
552
Proof. iIntros "H1 H2". by iFrame "H1". Qed.

553
554
Lemma test_iFrame_affinely_1 P Q `{!Affine P} :
  P - <affine> Q - <affine> (P  Q).
555
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
556
557
Lemma test_iFrame_affinely_2 P Q `{!Affine P, !Affine Q} :
  P - Q - <affine> (P  Q).
558
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
559

Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
Lemma test_iAssert_modality P :  False -  P.
Proof.
  iIntros "HF".
563
  iAssert (<affine> False)%I with "[> -]" as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
  by iMod "HF".
Qed.
566

567
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
568
  <affine>  P -  <affine> P.
569
570
Proof. iIntros "H". iMod "H". done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
571
Lemma test_iAssumption_False P : False - P.
572
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573

574
575
576
577
578
579
Lemma test_iAssumption_coq_1 P Q : ( Q)  <affine> P - Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Lemma test_iAssumption_coq_2 P Q : (  Q)  <affine> P -  Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
580
(* Check instantiation and dependent types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
581
Lemma test_iSpecialize_dependent_type (P :  n, vec nat n  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
582
583
584
585
586
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
587

588
589
590
591
592
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat  PROP) l x :
  x  l  ([ list] y  l, Φ y) - Φ x.
Proof.
  iIntros (Hp) "HT".
593
  iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
594
595
596
  done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
597
598
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R  False.
599
Proof. eauto 10 with iFrame. Qed.
600

601
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
Robbert Krebbers's avatar
Robbert Krebbers committed
602
  P - Q - R  R  Q  P  R  False.
603
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
604

605
606
607
608
Lemma test_iCombine_frame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
609
Lemma test_iNext_evar P : P - True.
Ralf Jung's avatar
Ralf Jung committed
610
611
612
613
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614

615
616
Lemma test_iNext_sep1 P Q (R1 := (P  Q)%I) :
  ( P   Q)  R1 -  ((P  Q)  R1).
Robbert Krebbers's avatar
Robbert Krebbers committed
617
618
619
620
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
621

Robbert Krebbers's avatar
Robbert Krebbers committed
622
Lemma test_iNext_sep2 P Q :  P   Q -  (P  Q).
623
624
625
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
626

Robbert Krebbers's avatar
Robbert Krebbers committed
627
Lemma test_iNext_quantifier {A} (Φ : A  A  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
  ( y,  x,  Φ x y) -  ( y,  x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.

631
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofe} (f : A -n> A) x y :
632
633
634
  Next x  Next y - (Next (f x)  Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
635
Lemma test_iFrame_persistent (P Q : PROP) :
636
   P - Q - <pers> (P  P)  (P  Q  Q).
637
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
638

639
Lemma test_iSplit_persistently P Q :  P - <pers> (P  P).
640
Proof. iIntros "#?". by iSplit. Qed.
Ralf Jung's avatar
Ralf Jung committed
641

642
Lemma test_iSpecialize_persistent P Q :  P - (<pers> P  Q) - Q.
643
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
644

645
Lemma test_iDestruct_persistent P (Φ : nat  PROP) `{! x, Persistent (Φ x)}:
646
   (P -  x, Φ x) -
647
648
649
650
651
  P -  x, Φ x  P.
Proof.
  iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.

652
Lemma test_iLöb `{!BiLöb PROP} P :   n, ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
653
654
655
656
Proof.
  iLöb as "IH". iDestruct "IH" as (n) "IH".
  by iExists (S n).
Qed.
657

658
Lemma test_iInduction_wf (x : nat) P Q :
659
   P - Q -  (x + 0 = x)%nat .
660
661
662
Proof.
  iIntros "#HP HQ".
  iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
663
  rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
664
665
Qed.

666
667
668
669
670
671
672
673
674
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat  nat  PROP) y :
  ([ map] x  i  m, Φ y x) - ([ map] x  i  m, emp  Φ y x).
Proof.
  iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
  - by rewrite !big_sepM_empty.
  - rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
    by iApply "IH".
Qed.

675
676
677
678
679
680
681
682
683
684
685
686
Inductive tree := leaf | node (l r: tree).

Check "test_iInduction_multiple_IHs".
Lemma test_iInduction_multiple_IHs (t: tree) (Φ : tree  PROP) :
   Φ leaf -  ( l r, Φ l - Φ r - Φ (node l r)) - Φ t.
Proof.
  iIntros "#Hleaf #Hnode". iInduction t as [|l r] "IH".
  - iExact "Hleaf".
  - Show. (* should have "IH" and "IH1", since [node] has two trees *)
    iApply ("Hnode" with "IH IH1").
Qed.

687
Lemma test_iIntros_start_proof :
Gregory Malecha's avatar
Gregory Malecha committed
688
  @{PROP} True.
689
690
691
692
693
Proof.
  (* Make sure iIntros actually makes progress and enters the proofmode. *)
  progress iIntros. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
694
Lemma test_True_intros : (True : PROP) - True.
695
696
697
Proof.
  iIntros "?". done.
Qed.
698
699
700
701
702
703
704
705
706
707

Lemma test_iPoseProof_let P Q :
  (let R := True%I in R  P  Q) 
  P  Q.
Proof.
  iIntros (help) "HP".
  iPoseProof (help with "[$HP]") as "?". done.
Qed.

Lemma test_iIntros_let P :
Robbert Krebbers's avatar
Robbert Krebbers committed
708
709
   Q, let R := emp%I in P - R - Q - P  Q.
Proof. iIntros (Q R) "$ _ $". Qed.
710

711
712
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
713
Proof.
714
  iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
715
716
Qed.

717
Lemma test_iIntros_modalities `{!BiPersistentlyForall PROP} `(!Absorbing P) :
Gregory Malecha's avatar
Gregory Malecha committed
718
   <pers> (   x : nat,  x = 0    x = 0  - False - P - P).
719
720
721
722
723
Proof.
  iIntros (x ??).
  iIntros "* **". (* Test that fast intros do not work under modalities *)
  iIntros ([]).
Qed.
724

725
726
727
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
  x1 = x2  ( x2 = x3    x3  x4   P) -  x1 = x4   P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
728

729
730
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
731
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
732

733
Lemma test_iAlways P Q R :
734
   P - <pers> Q  R - <pers> <affine> <affine> P   Q.
Ralf Jung's avatar
Ralf Jung committed
735
736
737
738
739
Proof.
  iIntros "#HP #HQ HR". iSplitL.
  - iModIntro. done.
  - iModIntro. done.
Qed.
740

Robbert Krebbers's avatar
Robbert Krebbers committed
741
742
743
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
744
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
745
746
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
747
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
748
749
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
750
  φ  ( _ : φ, False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
751
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
Lemma test_forall_nondep_4 (φ : Prop) :
753
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
754
755
756
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.

Lemma test_pure_impl_1 (φ : Prop) :
757
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
758
759
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
760
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
762
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
763
  φ  (⌜φ⌝  False : PROP) - False.
Ralf Jung's avatar
Ralf Jung committed
764
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _); done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
765
Lemma test_pure_impl_4 (φ : Prop) :
766
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
767
768
769
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.

Lemma test_forall_nondep_impl2 (φ : Prop) P :
770
  φ  P - ( _ : φ, P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
771
772
773
774
775
776
777
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

Lemma test_pure_impl2 (φ : Prop) P :
778
  φ  P - (⌜φ⌝  P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
779
780
781
782
783
784
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

785
786
787
788
789
Lemma demo_laterN_forall {A} (Φ Ψ: A  PROP) n: ( x, ^n Φ x) - ^n ( x, Φ x).
Proof.
  iIntros "H" (w). iApply ("H" $! w).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
790
Lemma test_iNext_laterN_later P n :  ^n P - ^n  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
791
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
792
Lemma test_iNext_later_laterN P n : ^n  P -  ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
793
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
794
Lemma test_iNext_plus_1 P n1 n2 :  ^n1 ^n2 P - ^n1 ^n2  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
795
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
796
797
Lemma test_iNext_plus_2 P n m : ^n ^m P - ^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
798
Check "test_iNext_plus_3".
Robbert Krebbers's avatar
Robbert Krebbers committed
799
800
Lemma test_iNext_plus_3 P Q n m k :
  ^m ^(2 + S n + k) P - ^m  ^(2 + S n) Q - ^k  ^(S (S n + S m)) (P  Q).
801
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
802

803
804
805
806
807
808
809
810
Lemma test_iNext_unfold P Q n m (R := (^n P)%I) :
  R  ^m True.
Proof.
  iIntros "HR". iNext.
  match goal with |-  context [ R ] => idtac | |- _ => fail end.
  done.
Qed.

811
812
813
Lemma test_iNext_fail P Q a b c d e f g h i j:
  ^(a + b) ^(c + d + e) P - ^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
814
815

Lemma test_specialize_affine_pure (φ : Prop) P :
816
  φ  (<affine> ⌜φ⌝ - P)  P.
817
818
819
820
821
Proof.
  iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.

Lemma test_assert_affine_pure (φ : Prop) P :
822
823
  φ  P  P  <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
824
825
Lemma test_assert_pure (φ : Prop) P :
  φ  P  P  ⌜φ⌝.
826
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
827

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
  φ 
  P - P2 -
  (<affine>  φ  - P2 - Q) -
  (P - Q - R1) -
  (R1 - True - R2) -
  R2.
Proof.
  iIntros (?) "HP HP2 HQ H1 H2".
  by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.

Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
   P1 -
   (P1 - P2) -
  (P2 - P2 - P3) -
  (P3 - P4) -
  (P4 - P5) -
  P5.
Proof.
  iIntros "#H #H1 H2 H3 H4".
  by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.

Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
  φ 
   P -  (P - Q) - (Q - Q - R2) - R2.
Proof.
  iIntros (?) "#HP #HQ HR".
  iSpecialize ("HR" with "(HQ HP) (HQ HP)").
  Show.
  done.
Qed.

Lemma test_specialize_intuitionistic P Q :
   P -  (P - Q) -  Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.

867
Lemma test_iEval x y :  (y + x)%nat = 1  @{PROP}  S (x + y) = 2%nat .
868
869
870
871
872
873
Proof.
  iIntros (H).
  iEval (rewrite (Nat.add_comm x y) // H).
  done.
Qed.

874
875
876
877
878
879
880
Lemma test_iEval_precedence : True  True : PROP.
Proof.
  iIntros.
  (* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
  iEval (rewrite /=); iPureIntro; exact I.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
881
Check "test_iSimpl_in".
882
Lemma test_iSimpl_in x y :  (3 + x)%nat = y  @{PROP}  S (S (S x)) = y .
Robbert Krebbers's avatar
Robbert Krebbers committed
883
884
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.

885
Lemma test_iSimpl_in_2 x y z :
886
887
   (3 + x)%nat = y  @{PROP}  (1 + y)%nat = z  -
   S (S (S x)) = y .
888
889
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.

890
Lemma test_iSimpl_in3 x y z :
891
892
   (3 + x)%nat = y  @{PROP}  (1 + y)%nat = z  -
   S (S (S x)) = y .
893
894
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.

Dan Frumin's avatar
Dan Frumin committed
895
Check "test_iSimpl_in4".
896
Lemma test_iSimpl_in4 x y :  (3 + x)%nat = y  @{PROP}  S (S (S x)) = y .
Dan Frumin's avatar
Dan Frumin committed
897
898
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
Check "test_iRename".
Lemma test_iRename P : P - P.
Proof. iIntros "#H". iRename "H" into "X". Show. iExact "X". Qed.

(** [iTypeOf] is an internal tactic for the proofmode *)
Lemma test_iTypeOf Q R φ :  Q  R  ⌜φ⌝ - True.
Proof.
  iIntros "(#HQ & H)".
  lazymatch iTypeOf "HQ" with
  | Some (true, Q) => idtac
  | ?x => fail "incorrect iTypeOf HQ" x
  end.
  lazymatch iTypeOf "H" with
  | Some (false, (R  ⌜φ⌝)%I) => idtac
  | ?x => fail "incorrect iTypeOf H" x
  end.
  lazymatch iTypeOf "missing" with
  | None => idtac
  | ?x => fail "incorrect iTypeOf missing" x
  end.
Abort.

921
Lemma test_iPureIntro_absorbing (φ : Prop) :
Gregory Malecha's avatar
Gregory Malecha committed
922
  φ  @{PROP} <absorb> ⌜φ⌝.
923
924
Proof. intros ?. iPureIntro. done. Qed.

Ralf Jung's avatar
Ralf Jung committed
925
Check "test_iFrame_later_1".
926
Lemma test_iFrame_later_1 P Q : P   Q -  (P   Q).
927
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
928

Ralf Jung's avatar
Ralf Jung committed
929
Check "test_iFrame_later_2".
930
Lemma test_iFrame_later_2 P Q :  P   Q -  ( P   Q).
931
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
932
933
934
935
936

Lemma test_with_ident P Q R : P - Q - (P - Q - R) - R.
Proof.
  iIntros "? HQ H".
  iMatchHyp (fun H _ =>
937
    iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
938
Qed.
939
940

Lemma iFrame_with_evar_r P Q :
941
   R, (P - Q - P  R)