Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Iris
Commits
e785e4a0
Commit
e785e4a0
authored
May 01, 2022
by
Robbert Krebbers
Browse files
Merge branch 'robbert/iApply_pretty' into 'master'
Fix bug in `iApply` prettification. See merge request
!788
parents
9d04874f
854dcaaf
Pipeline
#65347
passed with stage
in 10 minutes and 11 seconds
Changes
3
Pipelines
1
Show whitespace changes
Inline
Side-by-side
iris/proofmode/ltac_tactics.v
View file @
e785e4a0
...
...
@@ -1240,8 +1240,7 @@ Local Ltac iApplyHypLoop H :=
[
eapply
tac_apply
with
H
_
_
_;
[
pm_reflexivity
|
iSolveTC
|
pm_reduce
;
pm_prettify
(* reduce redexes created by instantiation *)
]
|
pm_reduce
]
|
iSpecializePat
H
"[]"
;
last
iApplyHypLoop
H
].
Tactic
Notation
"iApplyHyp"
constr
(
H
)
:
=
...
...
@@ -1253,7 +1252,9 @@ Tactic Notation "iApplyHyp" constr(H) :=
end
].
Tactic
Notation
"iApply"
open_constr
(
lem
)
:
=
iPoseProofCore
lem
as
false
(
fun
H
=>
iApplyHyp
H
).
iPoseProofCore
lem
as
false
(
fun
H
=>
iApplyHyp
H
)
;
pm_prettify
.
(* reduce redexes created by instantiation; this is done at the
very end after all type classes have been solved. *)
(** * Disjunction *)
Tactic
Notation
"iLeft"
:
=
...
...
tests/proofmode.ref
View file @
e785e4a0
...
...
@@ -385,6 +385,18 @@ No applicable tactic.
"HP" : default emp mP
--------------------------------------∗
default emp mP
"test_iApply_prettification3"
: string
1 goal
PROP : bi
Ψ, Φ : nat → PROP
HP : ∀ (f : nat → nat) (y : nat),
TCEq f (λ x : nat, x + 10) → Ψ (f 1) -∗ Φ y
============================
"H" : Ψ 11
--------------------------------------∗
Ψ (1 + 10)
1 goal
PROP : bi
...
...
tests/proofmode.v
View file @
e785e4a0
...
...
@@ -1109,6 +1109,17 @@ Proof.
iIntros
"?"
.
iExists
_
.
iApply
modal_if_lemma2
.
done
.
Qed
.
Check
"test_iApply_prettification3"
.
Lemma
test_iApply_prettification3
(
Ψ
Φ
:
nat
→
PROP
)
:
(
∀
f
y
,
TCEq
f
(
λ
x
,
x
+
10
)
→
Ψ
(
f
1
)
-
∗
Φ
y
)
→
Ψ
11
-
∗
Φ
10
.
Proof
.
iIntros
(
HP
)
"H"
.
iApply
HP
.
(* should be [Ψ (1 + 10)], without a beta redex *)
Show
.
iApply
"H"
.
Qed
.
Lemma
test_iDestruct_clear
P
Q
R
:
P
-
∗
(
Q
∗
R
)
-
∗
True
.
Proof
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment