lang.v 48.6 KB
Newer Older
Michael Sammler's avatar
Michael Sammler committed
1
2
3
4
5
6
7
8
From iris.program_logic Require Export language ectx_language ectxi_language.
From stdpp Require Export strings.
From stdpp Require Import gmap list.
From refinedc.lang Require Export base.
Set Default Proof Using "Type".

Open Scope Z_scope.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
(** Representation of a standard (8-bit) byte. *)
Section Byte.
  Definition bits_per_byte : Z := 8.

  Definition byte_modulus : Z :=
    Eval cbv in 2 ^ bits_per_byte.

  Record byte :=
    Byte {
      byte_val : Z;
      byte_constr : -1 < byte_val < byte_modulus;
    }.

  Global Instance byte_eq_dec : EqDecision byte.
  Proof.
    move => [b1 H1] [b2 H2]. destruct (decide (b1 = b2)) as [->|].
    - left. assert (H1 = H2) as ->; [|done]. apply proof_irrel.
    - right. naive_solver.
  Qed.
Michael Sammler's avatar
Michael Sammler committed
28
29
30
31
32

  Program Definition byte0 : byte := {|
    byte_val := 0;
  |}.
  Next Obligation. done. Qed.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
End Byte.

(** Representation of a type layout (byte size and alignment constraint). *)
Section Layout.
  Record layout :=
    Layout {
      ly_size : nat;
      ly_align_log : nat;
    }.

  Definition sizeof   (ly : layout) : nat := ly.(ly_size).
  Definition ly_align (ly : layout) : nat := 2 ^ ly.(ly_align_log).

  Global Instance layout_dec_eq : EqDecision layout.
  Proof. solve_decision. Defined.

  Global Instance layout_inhabited : Inhabited layout :=
    populate (Layout 0 0).

  Global Instance layout_countable : Countable layout.
  Proof.
    refine (inj_countable'
      (λ ly, (ly.(ly_size), ly.(ly_align_log)))
      (λ '(sz, a), Layout sz a) _); by intros [].
  Qed.

  Global Instance layout_le : SqSubsetEq layout := λ ly1 ly2,
    (ly1.(ly_size)  ly2.(ly_size))%nat 
    (ly1.(ly_align_log)  ly2.(ly_align_log))%nat.

  Global Instance layout_le_po : PreOrder layout_le.
  Proof.
    split => ?; rewrite /layout_le => *; repeat case_bool_decide => //; lia.
  Qed.

  Definition ly_offset (ly : layout) (n : nat) : layout := {|
    ly_size := ly.(ly_size) - n;
    (* Sadly we need to have the second argument to factor2 as we want
    that if l is aligned to x, then l + n * x is aligned to x for all n
    including 0. *)
    ly_align_log := ly.(ly_align_log) `min` factor2 n ly.(ly_align_log)
  |}.

  Definition ly_set_size (ly : layout) (n : nat) : layout := {|
    ly_size := n;
    ly_align_log := ly.(ly_align_log)
  |}.

  Definition ly_mult (ly : layout) (n : nat) : layout := {|
    ly_size := ly.(ly_size) * n;
    ly_align_log := ly.(ly_align_log)
  |}.

  Definition ly_with_align (sz : nat) (align : nat) : layout := {|
    ly_size := sz;
    ly_align_log := factor2 align 0
  |}.

  Definition layout_wf (ly : layout) : Prop := (ly_align ly | ly.(ly_size)).

  Lemma layout_wf_mod (ly : layout) :
    ly.(ly_size) `mod` ly_align ly = 0  layout_wf ly.
  Proof.
    move => ?. apply Z.mod_divide => //. have ->: 0 = O by [].
    move => /Nat2Z.inj/Nat.pow_nonzero. lia.
  Qed.

  Class LayoutWf (ly : layout) : Prop := layout_wf_wf : layout_wf ly.

  (* Class required because the combinators of layout are made typeclass opaque
     later, so TCEq does not work. *)
  Class LayoutEq (ly1 ly2 : layout) : Prop := layout_eq : ly1 = ly2.
End Layout.
Michael Sammler's avatar
Michael Sammler committed
106
107
108

Arguments ly_size : simpl never.
Arguments sizeof _ /.
109
(*Arguments ly_align_log : simpl never.*)
Michael Sammler's avatar
Michael Sammler committed
110
111
Arguments ly_align : simpl never.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Typeclasses Opaque layout_le ly_offset ly_set_size ly_mult ly_with_align.

Hint Extern 0 (LayoutWf _) => refine (layout_wf_mod _ _); done : typeclass_instances.
Hint Extern 0 (LayoutWf _) => unfold LayoutWf; done : typeclass_instances.
Hint Extern 0 (LayoutEq _ _) => exact: eq_refl : typeclass_instances.

(** Representation of an integer type (size and signedness). *)
Section IntType.
  Definition signed := bool.

  Record int_type :=
    IntType {
      it_byte_size_log : nat;
      it_signed : signed;
    }.

  Definition bytes_per_int (it : int_type) : nat :=
    2 ^ it.(it_byte_size_log).

  Lemma bytes_per_int_gt_0 it : bytes_per_int it > 0.
  Proof.
    rewrite /bytes_per_int. move: it => [log ?] /=.
    rewrite Z2Nat_inj_pow. assert (0 < 2%nat ^ log); last lia.
    apply Z.pow_pos_nonneg; lia.
  Qed.

  Definition bits_per_int (it : int_type) : Z :=
    bytes_per_int it * bits_per_byte.

  Definition int_modulus (it : int_type) : Z :=
    2 ^ bits_per_int it.

  Definition int_half_modulus (it : int_type) : Z :=
    2 ^ (bits_per_int it - 1).

  Lemma int_modulus_twice_half_modulus (it : int_type) :
    int_modulus it = 2 * int_half_modulus it.
  Proof.
    rewrite /int_modulus /int_half_modulus.
    rewrite -[X in X * _]Z.pow_1_r -Z.pow_add_r; try f_equal; try lia.
    rewrite /bits_per_int /bytes_per_int.
    apply Z.le_add_le_sub_l. rewrite Z.add_0_r.
    rewrite Z2Nat_inj_pow.
    assert (0 < 2%nat ^ it_byte_size_log it * bits_per_byte); last lia.
    apply Z.mul_pos_pos; last (rewrite /bits_per_byte; lia).
    apply Z.pow_pos_nonneg; lia.
  Qed.

  (* Minimal representable integer. *)
  Definition min_int (it : int_type) : Z :=
    if it.(it_signed) then - int_half_modulus it else 0.

  (* Maximal representable integer. *)
  Definition max_int (it : int_type) : Z :=
    (if it.(it_signed) then int_half_modulus it else int_modulus it) - 1.

  Lemma min_int_le_0 (it : int_type) : min_int it  0.
  Proof.
    have ? := bytes_per_int_gt_0 it. rewrite /min_int /int_half_modulus.
    destruct (it_signed it) => //. trans (- 2 ^ 7) => //.
    rewrite -Z.opp_le_mono. apply Z.pow_le_mono_r => //.
    rewrite /bits_per_int /bits_per_byte. lia.
  Qed.

  Lemma max_int_ge_127 (it : int_type) : 127  max_int it.
  Proof.
    have ? := bytes_per_int_gt_0 it.
    rewrite /max_int /int_modulus /int_half_modulus.
    rewrite /bits_per_int /bits_per_byte.
    have ->: (127 = 2 ^ 7 - 1) by []. apply Z.sub_le_mono => //.
    destruct (it_signed it); apply Z.pow_le_mono_r; lia.
  Qed.

  Global Instance int_elem_of_it : ElemOf Z int_type :=
    λ z it, min_int it  z  max_int it.

Michael Sammler's avatar
Michael Sammler committed
188
189
190
191
192
193
194
195
196
197
198
199
  Lemma int_modulus_mod_in_range n it:
    it_signed it = false 
    (n `mod` int_modulus it)  it.
  Proof.
    move => ?.
    have [|??]:= Z.mod_pos_bound n (int_modulus it). {
      apply: Z.pow_pos_nonneg => //. rewrite /bits_per_int/bits_per_byte/=. lia.
    }
    destruct it as [? []] => //.
    split; unfold min_int, max_int => /=; lia.
  Qed.

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
  Definition it_layout (it : int_type) :=
    Layout (bytes_per_int it) it.(it_byte_size_log).

  Definition i8  := IntType 0 true.
  Definition u8  := IntType 0 false.
  Definition i16 := IntType 1 true.
  Definition u16 := IntType 1 false.
  Definition i32 := IntType 2 true.
  Definition u32 := IntType 2 false.
  Definition i64 := IntType 3 true.
  Definition u64 := IntType 3 false.

  (* hardcoding 64bit pointers for now *)
  Definition bytes_per_addr_log : nat := 3%nat.
  Definition bytes_per_addr : nat := (2 ^ bytes_per_addr_log)%nat.

  Definition intptr_t  := IntType bytes_per_addr_log false.
  Definition uintptr_t := IntType bytes_per_addr_log true.

  Definition size_t  := intptr_t.
  Definition ssize_t := uintptr_t.
  Definition bool_it := u8.
End IntType.

Michael Sammler's avatar
Michael Sammler committed
224
Declare Scope loc_scope.
Michael Sammler's avatar
Michael Sammler committed
225
226
Delimit Scope loc_scope with L.
Open Scope loc_scope.
227

228
Definition alloc_id := Z.
229
Definition addr := Z.
230

231
232
233
Definition dummy_alloc_id : alloc_id := 0.

Definition loc : Set := option alloc_id * addr.
234
235
236
237
238
239
240
241
242
243
244
245
Bind Scope loc_scope with loc.

Inductive mbyte : Set :=
| MByte (b : byte)
| MPtrFrag (l : loc) (n : nat)
| MPoison.

Definition val : Set := list mbyte.
Bind Scope val_scope with val.

Inductive lock_state := WSt | RSt (n : nat).

246
Definition heap := gmap addr (alloc_id * lock_state * mbyte).
247

248
249
250
251
252
253
Record allocation :=
  Allocation {
    alloc_start : Z; (* First valid address. *)
    alloc_end : Z;   (* One-past-the-end address. *)
  }.

254
Definition allocs := gmap alloc_id allocation.
255
256
257



Michael Sammler's avatar
Michael Sammler committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
Definition shift_loc (l : loc) (z : Z) : loc := (l.1, l.2 + z).
Notation "l +ₗ z" := (shift_loc l%L z%Z)
  (at level 50, left associativity) : loc_scope.
Definition offset_loc (l : loc) (ly : layout) (z : Z) : loc := (l + ly.(ly_size) * z).
Notation "l 'offset{' ly '}ₗ' z" := (offset_loc l%L ly z%Z)
  (at level 50, format "l  'offset{' ly '}ₗ'  z", left associativity) : loc_scope.

Definition aligned_to (l : loc) (n : nat) : Prop := (n | l.2).
Notation "l `aligned_to` n" := (aligned_to l n) (at level 50) : stdpp_scope.
Definition has_layout_loc (l : loc) (ly : layout) : Prop := l `aligned_to` ly_align ly.
Notation "l `has_layout_loc` n" := (has_layout_loc l n) (at level 50) : stdpp_scope.
Definition has_layout_val (v : val) (ly : layout) : Prop := length v = ly.(ly_size).
Notation "v `has_layout_val` n" := (has_layout_val v n) (at level 50) : stdpp_scope.

Arguments aligned_to : simpl never.
(* Arguments aligned_to_log : simpl never. *)
Arguments has_layout_loc : simpl never.
Arguments has_layout_val : simpl never.
276
Typeclasses Opaque aligned_to has_layout_loc has_layout_val.
Michael Sammler's avatar
Michael Sammler committed
277

278
279
280
281
282

(*** Definitions of the language *)
Definition label := string. (* make TC opaque and implement countable and eqdicision *)
Definition var_name := string.

Michael Sammler's avatar
Michael Sammler committed
283
284
285
286
287
288
Inductive op_type : Set :=
| IntOp (i : int_type) | PtrOp.

(* see http://compcert.inria.fr/doc/html/compcert.cfrontend.Cop.html#binary_operation *)
Inductive bin_op : Set :=
| AddOp | SubOp | MulOp | DivOp | ModOp | AndOp | OrOp | XorOp | ShlOp
289
| ShrOp | EqOp | NeOp | LtOp | GtOp | LeOp | GeOp
Michael Sammler's avatar
Michael Sammler committed
290
(* Ptr is the second argument and pffset the first *)
291
| PtrOffsetOp (ly : layout) | PtrNegOffsetOp (ly : layout).
Michael Sammler's avatar
Michael Sammler committed
292
293
294
295
296
297

Inductive un_op : Set :=
| NotBoolOp | NotIntOp | NegOp | CastOp (ot : op_type).
Inductive order : Set :=
| ScOrd | Na1Ord | Na2Ord.

298
299
Section expr.
Local Unset Elimination Schemes.
Michael Sammler's avatar
Michael Sammler committed
300
301
302
303
304
Inductive expr :=
| Var (x : var_name)
| Val (v : val)
| UnOp (op : un_op) (ot : op_type) (e : expr)
| BinOp (op : bin_op) (ot1 ot2 : op_type) (e1 e2 : expr)
305
| CopyAllocId (e1 : expr) (e2 : expr)
Michael Sammler's avatar
Michael Sammler committed
306
307
| Deref (o : order) (ly : layout) (e : expr)
| CAS (ot : op_type) (e1 e2 e3 : expr)
308
| Call (f : expr) (args : list expr)
Michael Sammler's avatar
Michael Sammler committed
309
310
311
312
| Concat (es : list expr)
| SkipE (e : expr)
| StuckE (* stuck expression *)
.
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
End expr.
Arguments Call _%E _%E.
Lemma expr_ind (P : expr  Prop) :
  ( (x : var_name), P (Var x)) 
  ( (v : val), P (Val v)) 
  ( (op : un_op) (ot : op_type) (e : expr), P e  P (UnOp op ot e)) 
  ( (op : bin_op) (ot1 ot2 : op_type) (e1 e2 : expr), P e1  P e2  P (BinOp op ot1 ot2 e1 e2)) 
  ( (e1 e2 : expr), P e1  P e2  P (CopyAllocId e1 e2)) 
  ( (o : order) (ly : layout) (e : expr), P e  P (Deref o ly e)) 
  ( (ot : op_type) (e1 e2 e3 : expr), P e1  P e2  P e3  P (CAS ot e1 e2 e3)) 
  ( (f : expr) (args : list expr), P f  Forall P args  P (Call f args)) 
  ( (es : list expr), Forall P es  P (Concat es)) 
  ( (e : expr), P e  P (SkipE e)) 
  (P StuckE) 
   (e : expr), P e.
Proof.
  move => *. generalize dependent P => P. match goal with | e : expr |- _ => revert e end.
  fix FIX 1. move => [ ^e] => ??????? Hcall Hconcat *.
  8: { apply Hcall; [ |apply Forall_true => ?]; by apply: FIX. }
  8: { apply Hconcat. apply Forall_true => ?. by apply: FIX. }
  all: auto.
Qed.

Global Instance val_inj : Inj (=) (=) Val.
Proof. by move => ?? [->]. Qed.
Michael Sammler's avatar
Michael Sammler committed
338
339
340
341
342

(** Note that there is no explicit Fork. Instead the initial state can
contain multiple threads (like a processor which has a fixed number of
hardware threads). *)
Inductive stmt :=
343
| Goto (b : label)
Michael Sammler's avatar
Michael Sammler committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
| Return (e : expr)
(* m: map from values of e to indices into bs, def: default *)
| Switch (it : int_type) (e : expr) (m : gmap Z nat) (bs : list stmt) (def : stmt)
| Assign (o : order) (ly : layout) (e1 e2 : expr) (s : stmt)
| SkipS (s : stmt)
| StuckS (* stuck statement *)
| ExprS (e : expr) (s : stmt)
.

Arguments Switch _%E _%E _%E.

Record function := {
  f_args : list (var_name * layout);
  f_local_vars : list (var_name * layout);
  (* TODO should we add this: f_ret : layout; ?*)
359
360
  f_code : gmap label stmt;
  f_init : label;
Michael Sammler's avatar
Michael Sammler committed
361
362
363
364
365
}.

(* TODO: put both function and bytes in the same heap or make pointers disjoint (current version is wrong)*)
Record state := {
  st_heap: heap;
366
  st_allocs: allocs;
Michael Sammler's avatar
Michael Sammler committed
367
368
369
370
371
372
373
374
375
376
377
  st_fntbl: gmap loc function;
}.

Record runtime_function := {
  (* locations of args and local vars are substitued in the body *)
  rf_fn : function;
  (* locations in the stack frame (locations of arguments and local
  vars allocated on Call, need to be freed by Return) *)
  rf_locs: list (loc * layout);
}.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
Inductive runtime_expr :=
| Expr (e : rtexpr)
| Stmt (rf : runtime_function) (s : rtstmt)
| AllocFailed
with rtexpr :=
| RTVar (x : var_name)
| RTVal (v : val)
| RTUnOp (op : un_op) (ot : op_type) (e : runtime_expr)
| RTBinOp (op : bin_op) (ot1 ot2 : op_type) (e1 e2 : runtime_expr)
| RTCopyAllocId (e1 : runtime_expr) (e2 : runtime_expr)
| RTDeref (o : order) (ly : layout) (e : runtime_expr)
| RTCall (f : runtime_expr) (args : list runtime_expr)
| RTCAS (ot : op_type) (e1 e2 e3 : runtime_expr)
| RTConcat (es : list runtime_expr)
| RTSkipE (e : runtime_expr)
| RTStuckE
with rtstmt :=
| RTGoto (b : label)
| RTReturn (e : runtime_expr)
| RTSwitch (it : int_type) (e : runtime_expr) (m : gmap Z nat) (bs : list stmt) (def : stmt)
| RTAssign (o : order) (ly : layout) (e1 e2 : runtime_expr) (s : stmt)
| RTSkipS (s : stmt)
| RTStuckS
| RTExprS (e : runtime_expr) (s : stmt)
.
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
Fixpoint to_rtexpr (e : expr) : runtime_expr :=
  Expr $ match e with
  | Var x => RTVar x
  | Val v => RTVal v
  | UnOp op ot e => RTUnOp op ot (to_rtexpr e)
  | BinOp op ot1 ot2 e1 e2 => RTBinOp op ot1 ot2 (to_rtexpr e1) (to_rtexpr e2)
  | CopyAllocId e1 e2 => RTCopyAllocId (to_rtexpr e1) (to_rtexpr e2)
  | Deref o ly e => RTDeref o ly (to_rtexpr e)
  | Call f args => RTCall (to_rtexpr f) (to_rtexpr <$> args)
  | CAS ot e1 e2 e3 => RTCAS ot (to_rtexpr e1) (to_rtexpr e2) (to_rtexpr e3)
  | Concat es => RTConcat (to_rtexpr <$> es)
  | SkipE e => RTSkipE (to_rtexpr e)
  | StuckE => RTStuckE
  end.
Definition coerce_rtexpr := to_rtexpr.
Coercion coerce_rtexpr : expr >-> runtime_expr.
Arguments coerce_rtexpr : simpl never.
Definition to_rtstmt (rf : runtime_function) (s : stmt) : runtime_expr :=
  Stmt rf $ match s with
  | Goto b => RTGoto b
  | Return e => RTReturn (to_rtexpr e)
  | Switch it e m bs def => RTSwitch it (to_rtexpr e) m bs def
  | Assign o ly e1 e2 s => RTAssign o ly (to_rtexpr e1) (to_rtexpr e2) s
  | SkipS s => RTSkipS s
  | StuckS => RTStuckS
  | ExprS e s => RTExprS (to_rtexpr e) s
  end.
431

432
433
434
435
436
437
438
439
440
441
442
443
444
Global Instance to_rtexpr_inj : Inj (=) (=) to_rtexpr.
Proof.
  elim => [ ^ e1 ] [ ^ e2 ] // ?; simplify_eq => //; try naive_solver.
  - f_equal. naive_solver.
    generalize dependent e2args.
    revert select (Forall _ _). elim. by case.
    move => ????? [|??]//. naive_solver.
  - generalize dependent e2es.
    revert select (Forall _ _). elim. by case.
    move => ????? [|??]//. naive_solver.
Qed.
Global Instance to_rtstmt_inj : Inj2 (=) (=) (=) to_rtstmt.
Proof. move => ? s1 ? s2 [-> ]. elim: s1 s2 => [ ^ e1 ] [ ^ e2 ] // ?; simplify_eq => //. Qed.
Michael Sammler's avatar
Michael Sammler committed
445

446
Implicit Type (l : loc) (re : rtexpr) (v : val) (sz : nat) (h : heap) (σ : state) (ly : layout) (rs : rtstmt) (s : stmt) (sgn : signed) (rf : runtime_function).
Michael Sammler's avatar
Michael Sammler committed
447
448
449
450
451
452

(*** Relating val to logical values *)
(* we use little endian *)
Fixpoint val_to_int_go v : option Z :=
match v with
| [] => Some 0
453
| (MByte b)::v' => z  val_to_int_go v'; Some (byte_modulus * z + b.(byte_val))
Michael Sammler's avatar
Michael Sammler committed
454
455
456
| _ => None
end.
Definition val_to_int (v : val) (it : int_type) : option Z :=
457
458
  if decide (length v = bytes_per_int it) then
    z  val_to_int_go v; if it.(it_signed) && bool_decide (int_half_modulus it  z) then Some (z - int_modulus it) else Some z
Michael Sammler's avatar
Michael Sammler committed
459
460
461
462
463
  else None.

Program Fixpoint val_of_int_go (n : Z) sz : val :=
  match sz return _ with
  | O => []
464
  | S sz' => (MByte ({| byte_val := (n `mod` byte_modulus) |}))::(val_of_int_go (n / byte_modulus) sz')
Michael Sammler's avatar
Michael Sammler committed
465
  end.
466
Next Obligation. move => n. have [] := Z_mod_lt n byte_modulus => //*. lia. Qed.
Michael Sammler's avatar
Michael Sammler committed
467
468

Definition val_of_int (z : Z) (it : int_type) : option val :=
469
470
471
  if bool_decide (z  it) then
    let p := if bool_decide (z < 0) then z + int_modulus it else z in
    Some (val_of_int_go p (bytes_per_int it))
Michael Sammler's avatar
Michael Sammler committed
472
473
474
475
476
477
478
479
  else
    None.

Lemma val_of_int_go_length z sz :
  length (val_of_int_go z sz) = sz.
Proof. elim: sz z => //= ? IH ?. by f_equal. Qed.

Lemma val_to_of_int_go z sz :
480
  0  z < 2 ^ (sz * bits_per_byte) 
Michael Sammler's avatar
Michael Sammler committed
481
482
  val_to_int_go (val_of_int_go z sz) = Some z.
Proof.
483
  rewrite /bits_per_byte.
Michael Sammler's avatar
Michael Sammler committed
484
  elim: sz z => /=. 1: rewrite /Z.of_nat; move => ??; f_equal; lia.
485
  move => sz IH z [? Hlt]. rewrite IH /byte_modulus /= -?Z_div_mod_eq //.
Michael Sammler's avatar
Michael Sammler committed
486
487
488
489
490
491
  split. apply Z_div_pos => //. apply Zdiv_lt_upper_bound => //.
  rewrite Nat2Z.inj_succ -Zmult_succ_l_reverse Z.pow_add_r // in Hlt.
  lia.
Qed.

Lemma val_of_int_length z it v:
492
  val_of_int z it = Some v  length v = bytes_per_int it.
Michael Sammler's avatar
Michael Sammler committed
493
494
495
Proof. rewrite /val_of_int => Hv. case_bool_decide => //. simplify_eq. by rewrite val_of_int_go_length. Qed.

Lemma val_to_int_length v it z:
496
  val_to_int v it = Some z  length v = bytes_per_int it.
Michael Sammler's avatar
Michael Sammler committed
497
498
499
Proof. rewrite /val_to_int. by case_decide. Qed.

Lemma val_of_int_is_some it z:
500
  z  it  is_Some (val_of_int z it).
Michael Sammler's avatar
Michael Sammler committed
501
502
503
Proof. rewrite /val_of_int. case_bool_decide; by eauto. Qed.

Lemma val_of_int_in_range it z v:
504
  val_of_int z it = Some v  z  it.
Michael Sammler's avatar
Michael Sammler committed
505
506
507
Proof. rewrite /val_of_int. case_bool_decide; by eauto. Qed.

Lemma val_to_of_int z it v:
508
  val_of_int z it = Some v  val_to_int v it = Some z.
Michael Sammler's avatar
Michael Sammler committed
509
510
Proof.
  rewrite /val_of_int /val_to_int => Ht.
511
512
513
514
  destruct (bool_decide (z  it)) eqn: Hr => //. simplify_eq.
  move: Hr => /bool_decide_eq_true[Hm HM].
  have Hlen := bytes_per_int_gt_0 it.
  rewrite /max_int in HM. rewrite /min_int in Hm.
Michael Sammler's avatar
Michael Sammler committed
515
  rewrite val_of_int_go_length val_to_of_int_go /=.
516
517
518
519
520
521
522
523
524
525
526
527
  - case_decide as H => //. clear H.
    destruct (it_signed it) eqn:Hs => /=.
    + case_decide => /=; last (rewrite bool_decide_false //; lia).
      rewrite bool_decide_true; [f_equal; lia|].
      rewrite int_modulus_twice_half_modulus. move: Hm HM.
      generalize (int_half_modulus it). move => n Hm HM. lia.
    + rewrite bool_decide_false //. lia.
  - case_bool_decide as Hneg; case_match; split; try lia.
    + rewrite int_modulus_twice_half_modulus. lia.
    + rewrite /int_modulus /bits_per_int. lia.
    + rewrite /int_half_modulus in HM.
      transitivity (2 ^ (bits_per_int it -1)); first lia.
528
      rewrite /bits_per_int /bytes_per_int /bits_per_byte /=.
529
530
      apply Z.pow_lt_mono_r; try lia.
    + rewrite /int_modulus /bits_per_int in HM. lia.
Michael Sammler's avatar
Michael Sammler committed
531
532
Qed.

533
534
535
536
537
538
539
540
541
Lemma it_in_range_mod n it:
  n  it  it_signed it = false 
  n `mod` int_modulus it = n.
Proof.
  move => [??] ?. rewrite Z.mod_small //.
  destruct it as [? []] => //. unfold min_int, max_int in *. simpl in *.
  lia.
Qed.

Michael Sammler's avatar
Michael Sammler committed
542
543
Fixpoint val_to_loc_go (v : val) (pos : nat) (l : loc) : option loc :=
  match v with
544
  | (MPtrFrag l' pos')::v' =>
Michael Sammler's avatar
Michael Sammler committed
545
    if bool_decide (pos = pos'  l = l') then
546
      if bool_decide (pos = bytes_per_addr - 1)%nat then (if v' is [] then Some l else None) else val_to_loc_go v' (S pos) l
Michael Sammler's avatar
Michael Sammler committed
547
548
549
550
551
    else None
  | _ => None
  end.
Definition val_to_loc (v : val) : option loc :=
  match v with
552
  | (MPtrFrag l 0)::v' => val_to_loc_go v' 1%nat l
Michael Sammler's avatar
Michael Sammler committed
553
554
  | _ => None
  end.
555
Definition val_of_loc (l : loc) : val := MPtrFrag l <$> seq 0 bytes_per_addr.
Michael Sammler's avatar
Michael Sammler committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

Lemma val_to_of_loc l :
  val_to_loc (val_of_loc l) = Some l.
Proof. simpl. by case_decide. Qed.

Lemma val_of_to_loc v l :
  val_to_loc v = Some l  v = val_of_loc l.
Proof.
  destruct v => //=; case_match => //; case_match => //.
  repeat (match goal with
  | |- context [ val_to_loc_go ?v _ _ ] => destruct v
          end => //=;
                  case_match => //; repeat (case_decide; subst => //=)).
  by case_match => // [[->]].
Qed.

572
Definition i2v (n : Z) (it : int_type) : val := default [MPoison] (val_of_int n it).
Michael Sammler's avatar
Michael Sammler committed
573
574
575
576
577
578
579

Definition val_of_bool (b : bool) : val := i2v (Z_of_bool b) bool_it.

Lemma val_of_int_bool b it:
  val_of_int (Z_of_bool b) it = Some (i2v (Z_of_bool b) it).
Proof.
  have [|? Hv] := val_of_int_is_some it (Z_of_bool b); last by rewrite /i2v Hv.
580
581
  rewrite /elem_of /int_elem_of_it.
  have ? := min_int_le_0 it. have ? := max_int_ge_127 it.
Michael Sammler's avatar
Michael Sammler committed
582
583
584
  split; destruct b => /=; lia.
Qed.

Michael Sammler's avatar
Michael Sammler committed
585
Lemma i2v_bool_length b it:
586
  length (i2v (Z_of_bool b) it) = bytes_per_int it.
Michael Sammler's avatar
Michael Sammler committed
587
588
589
590
591
Proof. by have /val_of_int_length -> := val_of_int_bool b it. Qed.
Lemma i2v_bool_Some b it:
  val_to_int (i2v (Z_of_bool b) it) it = Some (Z_of_bool b).
Proof. apply val_to_of_int. apply val_of_int_bool. Qed.

Michael Sammler's avatar
Michael Sammler committed
592
593
594
595
596
597
598
599
600
601
602
Arguments val_to_int : simpl never.
Arguments val_of_int : simpl never.
Arguments val_to_loc : simpl never.
Arguments val_of_loc : simpl never.
Typeclasses Opaque val_to_loc val_of_loc val_to_int val_of_int val_of_bool.


Lemma val_to_int_bool b :
  val_to_int (val_of_bool b) bool_it = Some (Z_of_bool b).
Proof. by destruct b. Qed.

Michael Sammler's avatar
Michael Sammler committed
603
604
605
606
607
Definition zero_val (n : nat) : val :=
  replicate n (MByte byte0).
Arguments zero_val : simpl never.
Typeclasses Opaque zero_val.

Michael Sammler's avatar
Michael Sammler committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
(*** Properties of layouts and alignment *)
Lemma ly_align_log_ly_align_eq_iff ly1 ly2:
  ly_align_log ly1 = ly_align_log ly2  ly_align ly1 = ly_align ly2.
Proof. rewrite /ly_align. split; first naive_solver. move => /Nat.pow_inj_r. lia. Qed.

Lemma ly_align_ly_with_align m n :
  ly_align (ly_with_align m n) = keep_factor2 n 1.
Proof. rewrite /ly_with_align/keep_factor2/factor2. by destruct (factor2' n). Qed.

Lemma ly_align_ly_offset ly n :
  ly_align (ly_offset ly n) = (ly_align ly `min` keep_factor2 n (ly_align ly))%nat.
Proof.
  rewrite /ly_align/keep_factor2/=/factor2. destruct (factor2' n) as [n'|] => /=; last by rewrite !Nat.min_id.
  destruct (decide (ly_align_log ly  n'))%nat;[rewrite !min_l|rewrite !min_r]; try lia;
    apply Nat.pow_le_mono_r; lia.
Qed.

Lemma ly_align_ly_set_size ly n:
  ly_align (ly_set_size ly n) = ly_align ly.
Proof. done. Qed.

Lemma ly_with_align_aligned_to l m n:
  l `aligned_to` n 
  is_power_of_two n 
  l `has_layout_loc` ly_with_align m n.
Proof. move => ??. by rewrite /has_layout_loc ly_align_ly_with_align keep_factor2_is_power_of_two. Qed.

Lemma has_layout_loc_trans l ly1 ly2 :
  l `has_layout_loc` ly2  (ly1.(ly_align_log)  ly2.(ly_align_log))%nat  l `has_layout_loc` ly1.
Proof. rewrite /has_layout_loc/aligned_to => Hl ?. etrans;[|by apply Hl]. by apply Zdivide_nat_pow. Qed.

Lemma has_layout_loc_1 l ly:
  ly_align ly = 1%nat 
  l `has_layout_loc` ly.
Proof. rewrite /has_layout_loc =>  ->. by apply Z.divide_1_l. Qed.

Lemma has_layout_ly_offset l (n : nat) ly:
  l `has_layout_loc` ly 
  (l + n) `has_layout_loc` ly_offset ly n.
Proof.
  move => Hl. apply Z.divide_add_r.
  - apply: has_layout_loc_trans => //. rewrite {1}/ly_align_log/=. destruct n; lia.
  - rewrite/ly_offset. destruct n;[by subst;apply Z.divide_0_r|]. etrans;[apply Zdivide_nat_pow, Min.le_min_r|]. by apply factor2_divide.
Qed.

Lemma has_layout_loc_ly_mult_offset l ly n:
  layout_wf ly 
  l `has_layout_loc` ly_mult ly (S n) 
  (l + ly_size ly) `has_layout_loc` ly_mult ly n.
Proof. move => ??. rewrite /ly_mult. by apply Z.divide_add_r. Qed.


Lemma aligned_to_offset l n off :
  l `aligned_to` n  (n | off)  (l + off) `aligned_to` n.
Proof. apply Z.divide_add_r. Qed.

Lemma aligned_to_add l (n : nat) x:
  (l + x * n) `aligned_to` n  l `aligned_to` n.
Proof.
667
  unfold aligned_to. destruct l => /=. rewrite Z.add_comm.
Michael Sammler's avatar
Michael Sammler committed
668
669
670
671
672
673
674
675
  split.
  - apply: Z.divide_add_cancel_r. by apply Z.divide_mul_r.
  - apply Z.divide_add_r. by apply Z.divide_mul_r.
Qed.

Lemma aligned_to_mult_eq l n1 n2 off:
  l `aligned_to` n2  (l + off) `aligned_to` (n1 * n2)  (n2 | off).
Proof.
676
  unfold aligned_to. destruct l => /= ??. apply: Z.divide_add_cancel_r => //.
Michael Sammler's avatar
Michael Sammler committed
677
678
679
680
681
  apply: (Zdivide_mult_l _ n1). by rewrite Z.mul_comm -Nat2Z.inj_mul.
Qed.

(*** Helper functions for accessing the heap *)

682
683
684
685
(* The address range between [l] and [l +ₗ n] (included) is in range of the
   allocation that contains [l]. Note that we consider the 1-past-the-end
   pointer to be in range of an allocation. *)
Definition heap_loc_in_bounds (l : loc) (n : nat) (st : state) : Prop :=
686
687
688
689
690
   alloc_id alloc,
    l.1 = Some alloc_id 
    st.(st_allocs) !! alloc_id = Some alloc 
    alloc.(alloc_start)  l.2 
    l.2 + n  alloc.(alloc_end).
691

Michael Sammler's avatar
Michael Sammler committed
692
693
694
Fixpoint heap_at_go l v flk h : Prop :=
  match v with
  | [] => True
695
  | b::v' => ( lk, h !! l.2 = Some (default dummy_alloc_id l.1, lk, b)  flk lk)  heap_at_go (l + 1) v' flk h
Michael Sammler's avatar
Michael Sammler committed
696
697
698
  end.

Definition heap_at l ly v flk h : Prop :=
699
700
701
702
  is_Some l.1  l `has_layout_loc` ly  v `has_layout_val` ly  heap_at_go l v flk h.

Definition heap_block_free (h : heap) (aid : alloc_id) : Prop :=
   a ha, h !! a = Some ha  ha.1.1  aid.
Michael Sammler's avatar
Michael Sammler committed
703

704
705
Definition heap_range_free (h : heap) (a : addr) (n : nat) : Prop :=
   a', a  a' < a + n  h !! a' = None.
Michael Sammler's avatar
Michael Sammler committed
706

707
Fixpoint heap_upd l v (flk : option lock_state  lock_state) (h : heap) : heap :=
Michael Sammler's avatar
Michael Sammler committed
708
  match v with
709
710
  | b::v' => partial_alter (λ m, Some (default dummy_alloc_id l.1,
                                       flk (snd <$> (fst <$> m)), b)) l.2 (heap_upd (l + 1) v' flk h)
Michael Sammler's avatar
Michael Sammler committed
711
712
713
714
715
716
717
718
719
720
721
722
  | [] => h
  end.

Fixpoint heap_upd_list ls vs flk h : heap :=
  match ls, vs with
  | l::ls', v::vs' => heap_upd l v flk (heap_upd_list ls' vs' flk h)
  | _, _ => h
  end.

Fixpoint heap_free l n h : heap :=
  match n with
  | O => h
723
  | S n' => delete l.2 (heap_free (l + 1) n' h)
Michael Sammler's avatar
Michael Sammler committed
724
725
726
727
728
729
730
731
732
733
734
  end.

Fixpoint heap_free_list ls h : heap :=
  match ls with
  | (l, ly)::ls' => heap_free l ly.(ly_size) (heap_free_list ls' h)
  | _ => h
  end.

Definition heap_fmap f σ := {|
  st_heap := f σ.(st_heap);
  st_fntbl := σ.(st_fntbl);
735
  st_allocs := σ.(st_allocs);
Michael Sammler's avatar
Michael Sammler committed
736
737
|}.

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
(*** Allocation semantics *)
(* We reserve 0 for NULL. *)
Definition min_alloc_start : Z := 1.

(* We never allocate the last byte to always have valid one-past pointers. *)
Definition max_alloc_end   : Z := 2 ^ (bytes_per_addr * bits_per_byte) - 2.

Definition to_allocation (off : Z) (len : nat) : allocation :=
  Allocation off (off + len).

Definition in_range_allocation (a : allocation) : Prop :=
  min_alloc_start  a.(alloc_start)  a.(alloc_end)  max_alloc_end.

Inductive alloc_new_block : state  loc  val  state  Prop :=
| AllocNewBlock σ l aid v:
    l.1 = Some aid 
    σ.(st_allocs) !! aid = None 
    heap_block_free σ.(st_heap) aid 
    in_range_allocation (to_allocation l.2 (length v)) 
    heap_range_free σ.(st_heap) l.2 (length v) 
    alloc_new_block σ l v {|
      st_heap   := heap_upd l v (λ _, RSt 0%nat) σ.(st_heap);
      st_allocs := <[aid := to_allocation l.2 (length v)]> σ.(st_allocs);
      st_fntbl  := σ.(st_fntbl);
    |}.

Inductive alloc_new_blocks : state  list loc  list val  state  Prop :=
| AllocNewBlock_nil σ :
    alloc_new_blocks σ [] [] σ
| AllocNewBlock_cons σ σ' σ'' l v ls vs :
    alloc_new_block σ l v σ' 
    alloc_new_blocks σ' ls vs σ'' 
    alloc_new_blocks σ (l :: ls) (v :: vs) σ''.

(*** Substitution *)
Fixpoint subst (x : var_name) (v : val) (e : expr)  : expr :=
Michael Sammler's avatar
Michael Sammler committed
774
  match e with
775
776
777
778
779
780
781
782
783
784
785
  | Var y => if bool_decide (x = y) then Val v else Var y
  | Val v => Val v
  | UnOp op ot e => UnOp op ot (subst x v e)
  | BinOp op ot1 ot2 e1 e2 => BinOp op ot1 ot2 (subst x v e1) (subst x v e2)
  | CopyAllocId e1 e2 => CopyAllocId (subst x v e1) (subst x v e2)
  | Deref o l e => Deref o l (subst x v e)
  | Call e es => Call (subst x v e) (subst x v <$> es)
  | CAS ly e1 e2 e3 => CAS ly (subst x v e1) (subst x v e2) (subst x v e3)
  | Concat el => Concat (subst x v <$> el)
  | SkipE e => SkipE (subst x v e)
  | StuckE => StuckE
Michael Sammler's avatar
Michael Sammler committed
786
787
  end.

Michael Sammler's avatar
Michael Sammler committed
788
789
790
791
Fixpoint subst_l (xs : list (var_name * val)) (e : expr)  : expr :=
  match xs with
  | (x, v)::xs' => subst_l xs' (subst x v e)
  | _ => e
Michael Sammler's avatar
Michael Sammler committed
792
793
  end.

Michael Sammler's avatar
Michael Sammler committed
794
Fixpoint subst_stmt (xs : list (var_name * val)) (s : stmt) : stmt :=
795
796
  match s with
  | Goto b => Goto b
Michael Sammler's avatar
Michael Sammler committed
797
798
799
800
  | Return e => Return (subst_l xs e)
  | Switch it e m' bs def => Switch it (subst_l xs e) m' (subst_stmt xs <$> bs) (subst_stmt xs def)
  | Assign o ly e1 e2 s => Assign o ly (subst_l xs e1) (subst_l xs e2) (subst_stmt xs s)
  | SkipS s => SkipS (subst_stmt xs s)
801
  | StuckS => StuckS
Michael Sammler's avatar
Michael Sammler committed
802
  | ExprS e s => ExprS (subst_l xs e) (subst_stmt xs s)
803
804
  end.

Michael Sammler's avatar
Michael Sammler committed
805
806
Definition subst_function (xs : list (var_name * val)) (f : function) : function := {|
  f_code := (subst_stmt xs) <$> f.(f_code);
807
808
809
  f_args := f.(f_args); f_init := f.(f_init); f_local_vars := f.(f_local_vars);
|}.

Michael Sammler's avatar
Michael Sammler committed
810
811
812
(*** Evaluation of operations *)
(** Checks that the location [l] is allocated on the heap [h] *)
Definition valid_ptr l h : Prop :=
813
814
815
816
817
818
819
   aid lk b, l.1 = Some aid  h !! l.2 = Some (aid, lk, b).
Instance valid_ptr_dec l h : Decision (valid_ptr l h).
Proof.
  rewrite /valid_ptr/=. destruct l as [[aid|] a]; [ | right; naive_solver].
  destruct (h !! a) as [[[aid' ?]?]|] eqn: Hh; [ | right; naive_solver].
  destruct (decide (aid' = aid)); [left | right]; naive_solver.
Qed.
Michael Sammler's avatar
Michael Sammler committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
(** Checks whether location [l] is a weak valid pointer in heap [h].
[Some true] means [l] is a valid in bounds pointer, [Some false] means
[l] is a end of block pointer, [None] means [l] is not a valid pointer. *)
Definition weak_valid_ptr l h : option bool :=
  if decide (valid_ptr l h) then
    Some true
  else if decide (valid_ptr (l + -1) h  ¬valid_ptr l h) then
    Some false
  else None.
(** Checks equality between [l1] and [l2]. See
http://compcert.inria.fr/doc/html/compcert.common.Values.html#Val.cmplu_bool
*)
Definition ptr_eq l1 l2 h : option bool :=
  eob1  weak_valid_ptr l1 h;
  eob2  weak_valid_ptr l2 h;
835
  if decide (l1.1 = l2.1) then
Michael Sammler's avatar
Michael Sammler committed
836
837
838
839
840
    Some (bool_decide (l1 = l2))
  else
    if eob1 || eob2 then None else Some false.

(* evaluation can be non-deterministic for comparing pointers *)
841
842
Inductive eval_bin_op : bin_op  op_type  op_type  state  val  val  val  Prop :=
| PtrOffsetOpIP v1 v2 σ o l ly it:
Michael Sammler's avatar
Michael Sammler committed
843
844
845
846
    val_to_int v1 it = Some o 
    val_to_loc v2 = Some l 
    (* TODO: should we have an alignment check here? *)
    0  o 
847
    eval_bin_op (PtrOffsetOp ly) (IntOp it) PtrOp σ v1 v2 (val_of_loc (l offset{ly} o))
848
849
850
851
852
| PtrNegOffsetOpIP v1 v2 σ o l ly it:
    val_to_int v1 it = Some o 
    val_to_loc v2 = Some l 
    (* TODO: should we have an alignment check here? *)
    eval_bin_op (PtrNegOffsetOp ly) (IntOp it) PtrOp σ v1 v2 (val_of_loc (l offset{ly} -o))
853
854
| EqOpPNull v1 v2 σ l v:
    heap_loc_in_bounds l 0%nat σ 
Michael Sammler's avatar
Michael Sammler committed
855
856
857
858
    val_to_loc v1 = Some l 
    val_to_int v2 size_t = Some 0 
    (* TODO ( see below ): Should we really hard code i32 here because of C? *)
    i2v (Z_of_bool false) i32 = v 
859
860
861
    eval_bin_op EqOp PtrOp PtrOp σ v1 v2 v
| NeOpPNull v1 v2 σ l v:
    heap_loc_in_bounds l 0%nat σ 
Michael Sammler's avatar
Michael Sammler committed
862
863
864
    val_to_loc v1 = Some l 
    val_to_int v2 size_t = Some 0 
    i2v (Z_of_bool true) i32 = v 
865
866
    eval_bin_op NeOp PtrOp PtrOp σ v1 v2 v
| EqOpNullNull v1 v2 σ v:
Michael Sammler's avatar
Michael Sammler committed
867
868
869
    val_to_int v1 size_t = Some 0 
    val_to_int v2 size_t = Some 0 
    i2v (Z_of_bool true) i32 = v 
870
871
    eval_bin_op EqOp PtrOp PtrOp σ v1 v2 v
| NeOpNullNull v1 v2 σ v:
Michael Sammler's avatar
Michael Sammler committed
872
873
874
    val_to_int v1 size_t = Some 0 
    val_to_int v2 size_t = Some 0 
    i2v (Z_of_bool false) i32 = v 
875
876
    eval_bin_op NeOp PtrOp PtrOp σ v1 v2 v
| EqOpPP v1 v2 σ l1 l2 v b:
Michael Sammler's avatar
Michael Sammler committed
877
878
    val_to_loc v1 = Some l1 
    val_to_loc v2 = Some l2 
879
    ptr_eq l1 l2 σ.(st_heap) = Some b 
Michael Sammler's avatar
Michael Sammler committed
880
    i2v (Z_of_bool b) i32 = v 
881
882
    eval_bin_op EqOp PtrOp PtrOp σ v1 v2 v
| NeOpPP v1 v2 σ l1 l2 v b:
Michael Sammler's avatar
Michael Sammler committed
883
884
    val_to_loc v1 = Some l1 
    val_to_loc v2 = Some l2 
885
    ptr_eq l1 l2 σ.(st_heap) = Some b 
Michael Sammler's avatar
Michael Sammler committed
886
    i2v (Z_of_bool (negb b)) i32 = v 
887
888
    eval_bin_op NeOp PtrOp PtrOp σ v1 v2 v
| RelOpII op v1 v2 σ n1 n2 it b:
Michael Sammler's avatar
Michael Sammler committed
889
890
891
892
893
894
895
896
897
898
899
900
901
    match op with
    | EqOp => Some (bool_decide (n1 = n2))
    | NeOp => Some (bool_decide (n1  n2))
    | LtOp => Some (bool_decide (n1 < n2))
    | GtOp => Some (bool_decide (n1 > n2))
    | LeOp => Some (bool_decide (n1 <= n2))
    | GeOp => Some (bool_decide (n1 >= n2))
    | _ => None
    end = Some b 
    val_to_int v1 it = Some n1 
    val_to_int v2 it = Some n2 
    (* TODO: What is the right int type of the result here? C seems to
    use i32 but maybe we don't want to hard code that. *)
902
903
    eval_bin_op op (IntOp it) (IntOp it) σ v1 v2 (i2v (Z_of_bool b) i32)
| ArithOpII op v1 v2 σ n1 n2 it n v:
Michael Sammler's avatar
Michael Sammler committed
904
905
906
907
908
909
910
911
912
    match op with
    | AddOp => Some (n1 + n2)
    | SubOp => Some (n1 - n2)
    | MulOp => Some (n1 * n2)
    (* we need to take `quot` and `rem` here for the correct rounding
    behavior, i.e. rounding towards 0 (instead of `div` and `mod`,
    which round towards floor)*)
    | DivOp => if n2 is 0 then None else Some (n1 `quot` n2)
    | ModOp => if n2 is 0 then None else Some (n1 `rem` n2)
913
    (* TODO: Figure out if these are the operations we want and what sideconditions they have *)
Michael Sammler's avatar
Michael Sammler committed
914
915
916
917
918
919
920
921
922
    | AndOp => Some (Z.land n1 n2)
    | OrOp => Some (Z.lor n1 n2)
    | XorOp => Some (Z.lxor n1 n2)
    | ShlOp => Some (n1  n2)
    | ShrOp => Some (n1  n2)
    | _ => None
    end = Some n 
    val_to_int v1 it = Some n1 
    val_to_int v2 it = Some n2 
923
    val_of_int (if it_signed it then n else n `mod` int_modulus it) it = Some v 
924
    eval_bin_op op (IntOp it) (IntOp it) σ v1 v2 v
Michael Sammler's avatar
Michael Sammler committed
925
926
.

927
928
Inductive eval_un_op : un_op  op_type  state  val  val  Prop :=
| CastOpII itt its σ vs vt n:
Michael Sammler's avatar
Michael Sammler committed
929
930
    val_to_int vs its = Some n 
    val_of_int n itt = Some vt 
931
932
    eval_un_op (CastOp (IntOp itt)) (IntOp its) σ vs vt
| CastOpPP σ vs vt l:
Michael Sammler's avatar
Michael Sammler committed
933
934
    val_to_loc vs = Some l 
    val_of_loc l = vt 
935
    eval_un_op (CastOp PtrOp) PtrOp σ vs vt
936
937
938
939
940
941
942
943
| CastOpPI it σ vs vt l:
    val_to_loc vs = Some l 
    val_of_int l.2 it = Some vt 
    eval_un_op (CastOp (IntOp it)) PtrOp σ vs vt
| CastOpIP it σ vs vt n:
    val_to_int vs it = Some n 
    val_of_loc (None, n) = vt 
    eval_un_op (CastOp PtrOp) (IntOp it) σ vs vt
944
| NegOpI it σ vs vt n:
Michael Sammler's avatar
Michael Sammler committed
945
946
    val_to_int vs it = Some n 
    val_of_int (-n) it = Some vt 
947
    eval_un_op NegOp (IntOp it) σ vs vt
Michael Sammler's avatar
Michael Sammler committed
948
949
950
951
.

(*** Evaluation of Expressions *)

952
Inductive expr_step : expr  state  list Empty_set  runtime_expr  state  list runtime_expr  Prop :=
Michael Sammler's avatar
Michael Sammler committed
953
954
955
| SkipES v σ:
    expr_step (SkipE (Val v)) σ [] (Val v) σ []
| UnOpS op v σ v' ot:
956
    eval_un_op op ot σ v v' 
Michael Sammler's avatar
Michael Sammler committed
957
958
    expr_step (UnOp op ot (Val v)) σ [] (Val v') σ []
| BinOpS op v1 v2 σ v' ot1 ot2:
959
    eval_bin_op op ot1 ot2 σ v1 v2 v' 
Michael Sammler's avatar
Michael Sammler committed
960
961
962
    expr_step (BinOp op ot1 ot2 (Val v1) (Val v2)) σ [] (Val v') σ []
| DerefS o v l ly v' σ:
    let start_st st :=  n, st = if o is Na2Ord then RSt (S n) else RSt n in
963
964
965
966
967
968
969
970
    let end_st st :=
      match o, st with
      | Na1Ord, Some (RSt n)     => RSt (S n)
      | Na2Ord, Some (RSt (S n)) => RSt n
      | ScOrd , Some st          => st
      |  _    , _                => WSt (* unreachable *)
      end
    in
Michael Sammler's avatar
Michael Sammler committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
    let end_expr := if o is Na1Ord then Deref Na2Ord ly (Val v) else Val v' in
    val_to_loc v = Some l 
    heap_at l ly v' start_st σ.(st_heap) 
    expr_step (Deref o ly (Val v)) σ [] end_expr (heap_fmap (heap_upd l v' end_st) σ) []
(* TODO: look at CAS and see whether it makes sense. Also allow
comparing pointers? (see lambda rust) *)
(* corresponds to atomic_compare_exchange_strong, see https://en.cppreference.com/w/c/atomic/atomic_compare_exchange *)
| CasFailS l1 l2 vo ve σ z1 z2 v1 v2 v3 it:
    val_to_loc v1 = Some l1 
    heap_at l1 (it_layout it) vo (λ st,  n, st = RSt n) σ.(st_heap) 
    val_to_loc v2 = Some l2 
    heap_at l2 (it_layout it) ve (λ st, st = RSt 0%nat) σ.(st_heap) 
    val_to_int vo it = Some z1 
    val_to_int ve it = Some z2 
    v3 `has_layout_val` it_layout it 
986
    (bytes_per_int it  bytes_per_addr)%nat 
Michael Sammler's avatar
Michael Sammler committed
987
988
989
990
991
992
993
994
995
996
997
    z1  z2 
    expr_step (CAS (IntOp it) (Val v1) (Val v2) (Val v3)) σ []
              (Val (val_of_bool false)) (heap_fmap (heap_upd l2 vo (λ _, RSt 0%nat)) σ) []
| CasSucS l1 l2 it vo ve σ z1 z2 v1 v2 v3:
    val_to_loc v1 = Some l1 
    heap_at l1 (it_layout it) vo (λ st, st = RSt 0%nat) σ.(st_heap) 
    val_to_loc v2 = Some l2 
    heap_at l2 (it_layout it) ve (λ st,  n, st = RSt n) σ.(st_heap) 
    val_to_int vo it = Some z1 
    val_to_int ve it = Some z2 
    v3 `has_layout_val` it_layout it 
998
    (bytes_per_int it  bytes_per_addr)%nat 
Michael Sammler's avatar
Michael Sammler committed
999
1000
    z1 = z2 
    expr_step (CAS (IntOp it) (Val v1) (Val v2) (Val v3)) σ []
For faster browsing, not all history is shown. View entire blame