Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
RefinedC
Commits
4169ecd0
Commit
4169ecd0
authored
Nov 17, 2021
by
Michael Sammler
Committed by
Paul
Dec 03, 2021
Browse files
fix some more examples
parent
dd402124
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/lang/bitfield.v
View file @
4169ecd0
...
...
@@ -310,7 +310,7 @@ Qed.
Lemma
bf_from_Z_shiftl_1
it
(
n
:
Z
)
:
0
≤
n
→
1
≪
n
=
bf_to_Z
(
bf_cons
(
range_of
n
1
)
(
bf_
val
1
)
bf_nil
)
it
.
1
≪
n
=
bf_to_Z
(
bf_cons
(
range_of
n
1
)
(
bf_
mask
1
)
bf_nil
)
it
.
Proof
.
rewrite
/
bf_to_Z
/=/
bitwise
.
rc
.
bf_cons
/
bitwise
.
rc
.
bf_nil
=>
?.
bitblast
.
...
...
@@ -370,4 +370,3 @@ Global Instance max_int_u64_le_lt x :
Proof
.
unfold
SimplBoth
.
by
apply
max_int_unsigned_le_lt
.
Qed
.
theories/lithium/simpl_instances.v
View file @
4169ecd0
...
...
@@ -219,6 +219,8 @@ Global Instance simpl_bool_to_Z_0 (b : bool) : SimplBothRel (=) 0 (bool_to_Z b)
Proof
.
split
;
destruct
b
;
naive_solver
.
Qed
.
Global
Instance
simpl_bool_to_Z_1
(
b
:
bool
)
:
SimplBothRel
(=)
1
(
bool_to_Z
b
)
(
b
=
true
).
Proof
.
split
;
destruct
b
;
naive_solver
.
Qed
.
Global
Instance
simpl_Z_to_bool_ones_1
(
b
:
bool
)
:
SimplBothRel
(=)
(
Z
.
ones
1
)
(
Z_of_bool
b
)
(
b
=
true
).
Proof
.
split
;
destruct
b
;
naive_solver
.
Qed
.
(* Using a SimplBothRel does not work since [x ≠ y] (i.e., [not (x = y)]) does
not unify with [?R ?x ?y] (Coq's unification is too limited here). This can be
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment