diff --git a/CHANGELOG.md b/CHANGELOG.md index e5362c59b4fd8cd2eb6446b5f2c3876e113ac5d3..8152693b159cb34cceaf3c4383f9e218c4e81fb1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -7,6 +7,15 @@ API-breaking change is listed. and `dom_map_filter_subseteq` → `dom_filter_subseteq` for consistency's sake. - Add `max` and `min` operations for `Qp`. - Add additional lemmas for `Qp`. +- Remove the lemma `Qp_not_plus_q_ge_1` in favor of `Qp_not_plus_ge`. + +The following `sed` script should perform most of the renaming +(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`): +``` +sed -i ' +s/\bQp_not_plus_q_ge_1\b/Qp_not_plus_ge/g +' $(find theories -name "*.v") +``` ## std++ 1.4.0 (released 2020-07-15) diff --git a/theories/numbers.v b/theories/numbers.v index 451da9f8183cbd38eb7d5228831f8934175af002..3976a72bfe94d659e48956945bf9d166cf48760d 100644 --- a/theories/numbers.v +++ b/theories/numbers.v @@ -831,11 +831,11 @@ Proof. + by rewrite Qp_div_2. Qed. -Lemma Qp_not_plus_q_ge_1 (q: Qp): ¬ ((1 + q)%Qp ≤ 1%Qp)%Qc. +Lemma Qp_not_plus_ge (q p : Qp) : ¬ (q + p)%Qp ≤ q. Proof. - intros Hle. - apply (Qcplus_le_mono_l q 0 1) in Hle. - apply Qcle_ngt in Hle. apply Hle, Qp_prf. + rewrite <- (Qcplus_0_r q). + intros Hle%(Qcplus_le_mono_l p 0 q)%Qcle_ngt. + apply Hle, Qp_prf. Qed. Lemma Qp_ge_0 (q: Qp): (0 ≤ q)%Qc. @@ -856,6 +856,9 @@ Proof. |by apply Qcplus_le_mono_r]. Qed. +Lemma Qp_plus_id_free q p : q + p = q → False. +Proof. intro Heq. apply (Qp_not_plus_ge q p). by rewrite Heq. Qed. + Lemma Qp_plus_weak_r (q p o : Qp) : q + p ≤ o → q ≤ o. Proof. intros Le. eapply Qcle_trans; [ apply Qp_le_plus_l | apply Le ]. Qed. @@ -878,14 +881,14 @@ Qed. Lemma Qp_max_spec_le (q p : Qp) : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). Proof. destruct (Qp_max_spec q p) as [[?%Qclt_le_weak?]|]; [left|right]; done. Qed. -Instance Qc_max_assoc : Assoc (=) Qp_max. +Instance Qp_max_assoc : Assoc (=) Qp_max. Proof. intros q p o. unfold Qp_max. destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_True, Qcle_trans. rewrite decide_False by done. by rewrite decide_False by (eapply Qclt_not_le, Qclt_trans; by apply Qclt_nge). Qed. -Instance Qc_max_comm : Comm (=) Qp_max. +Instance Qp_max_comm : Comm (=) Qp_max. Proof. intros q p. apply Qp_eq. destruct (Qp_max_spec_le q p) as [[?->]|[?->]], (Qp_max_spec_le p q) as [[?->]|[?->]]; @@ -895,11 +898,11 @@ Qed. Lemma Qp_max_id q : q `max` q = q. Proof. by destruct (Qp_max_spec q q) as [[_->]|[_->]]. Qed. -Lemma Qc_le_max_l (q p : Qp) : q ≤ q `max` p. +Lemma Qp_le_max_l (q p : Qp) : q ≤ q `max` p. Proof. unfold Qp_max. by destruct (decide (q ≤ p)). Qed. -Lemma Qc_le_max_r (q p : Qp) : p ≤ q `max` p. -Proof. rewrite (comm _ q). apply Qc_le_max_l. Qed. +Lemma Qp_le_max_r (q p : Qp) : p ≤ q `max` p. +Proof. rewrite (comm _ q). apply Qp_le_max_l. Qed. Lemma Qp_max_plus (q p : Qp) : q `max` p ≤ q + p. Proof. @@ -926,14 +929,14 @@ Qed. Lemma Qp_min_spec_le (q p : Qp) : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). Proof. destruct (Qp_min_spec q p) as [[?%Qclt_le_weak?]|]; [left|right]; done. Qed. -Instance Qc_min_assoc : Assoc (=) Qp_min. +Instance Qp_min_assoc : Assoc (=) Qp_min. Proof. intros q p o. unfold Qp_min. destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False. - rewrite decide_True by done. by rewrite decide_True by (eapply Qcle_trans; done). - by rewrite (decide_False _ _) by (eapply Qclt_not_le, Qclt_trans; by apply Qclt_nge). Qed. -Instance Qc_min_comm : Comm (=) Qp_min. +Instance Qp_min_comm : Comm (=) Qp_min. Proof. intros q p. apply Qp_eq. destruct (Qp_min_spec_le q p) as [[?->]|[?->]], (Qp_min_spec_le p q) as [[? ->]|[? ->]];