Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
stdpp
Commits
947d9147
Commit
947d9147
authored
May 07, 2022
by
Ralf Jung
Browse files
remove Dom instances with alternative domain types
parent
b7a5fed7
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/coGset.v
View file @
947d9147
...
...
@@ -192,15 +192,5 @@ Lemma elem_of_coGset_to_top_set `{Countable A, TopSet A C} X x :
x
∈
@{
C
}
coGset_to_top_set
X
↔
x
∈
X
.
Proof
.
destruct
X
;
set_solver
.
Qed
.
(** * Domain of finite maps *)
Global
Instance
coGset_dom
`
{
Countable
K
}
{
A
}
:
Dom
(
gmap
K
A
)
(
coGset
K
)
:
=
λ
m
,
gset_to_coGset
(
dom
_
m
).
Global
Instance
coGset_dom_spec
`
{
Countable
K
}
:
FinMapDom
K
(
gmap
K
)
(
coGset
K
).
Proof
.
split
;
try
apply
_
.
intros
B
m
i
.
unfold
dom
,
coGset_dom
.
by
rewrite
elem_of_gset_to_coGset
,
elem_of_dom
.
Qed
.
Typeclasses
Opaque
coGset_elem_of
coGset_empty
coGset_top
coGset_singleton
.
Typeclasses
Opaque
coGset_union
coGset_intersection
coGset_difference
.
Typeclasses
Opaque
coGset_dom
.
theories/coPset.v
View file @
947d9147
...
...
@@ -358,21 +358,6 @@ Proof.
refine
(
cast_if
(
decide
(
¬
set_finite
X
)))
;
by
rewrite
coPset_infinite_finite
.
Defined
.
(** * Domain of finite maps *)
Global
Instance
Pmap_dom_coPset
{
A
}
:
Dom
(
Pmap
A
)
coPset
:
=
λ
m
,
Pset_to_coPset
(
dom
_
m
).
Global
Instance
Pmap_dom_coPset_spec
:
FinMapDom
positive
Pmap
coPset
.
Proof
.
split
;
try
apply
_;
intros
A
m
i
;
unfold
dom
,
Pmap_dom_coPset
.
by
rewrite
elem_of_Pset_to_coPset
,
elem_of_dom
.
Qed
.
Global
Instance
gmap_dom_coPset
{
A
}
:
Dom
(
gmap
positive
A
)
coPset
:
=
λ
m
,
gset_to_coPset
(
dom
_
m
).
Global
Instance
gmap_dom_coPset_spec
:
FinMapDom
positive
(
gmap
positive
)
coPset
.
Proof
.
split
;
try
apply
_;
intros
A
m
i
;
unfold
dom
,
gmap_dom_coPset
.
by
rewrite
elem_of_gset_to_coPset
,
elem_of_dom
.
Qed
.
(** * Suffix sets *)
Fixpoint
coPset_suffixes_raw
(
p
:
positive
)
:
coPset_raw
:
=
match
p
with
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment