diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v
index 114ae30d4fd760ea54f39d939ff14cb99706f4f6..d020c1941639122aa4f2614156325a9ec1e059a0 100644
--- a/theories/fin_map_dom.v
+++ b/theories/fin_map_dom.v
@@ -143,3 +143,14 @@ Proof. unfold_leibniz; apply dom_difference. Qed.
 Lemma dom_fmap_L {A B} (f : A → B) (m : M A) : dom D (f <$> m) = dom D m.
 Proof. unfold_leibniz; apply dom_fmap. Qed.
 End fin_map_dom.
+
+Lemma dom_seq `{FinMapDom nat M D} {A} start (xs : list A) :
+  dom D (map_seq start xs) ≡ set_seq start (length xs).
+Proof.
+  revert start. induction xs as [|x xs IH]; intros start; simpl.
+  - by rewrite dom_empty.
+  - by rewrite dom_insert, IH.
+Qed.
+Lemma dom_seq_L `{FinMapDom nat M D, !LeibnizEquiv D} {A} start (xs : list A) :
+  dom D (map_seq start xs) = set_seq start (length xs).
+Proof. unfold_leibniz. apply dom_seq. Qed.
diff --git a/theories/fin_maps.v b/theories/fin_maps.v
index 02d9dcfc31176c9a33c4f24646383d322de60f66..bfdb78d5140426111bb650b3200dcf49d237e361 100644
--- a/theories/fin_maps.v
+++ b/theories/fin_maps.v
@@ -137,6 +137,12 @@ Definition map_fold `{FinMapToList K A M} {B}
 Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
   λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) ∅.
 
+Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
+  match xs with
+  | [] => ∅
+  | x :: xs => <[start:=x]> (map_seq (S start) xs)
+  end.
+
 (** * Theorems *)
 Section theorems.
 Context `{FinMap K M}.
@@ -1911,6 +1917,82 @@ Proof.
 Qed.
 End theorems.
 
+(** ** The seq operation *)
+Section map_seq.
+  Context `{FinMap nat M} {A : Type}.
+  Implicit Types x : A.
+  Implicit Types xs : list A.
+
+  Lemma lookup_map_seq_Some_inv start xs i x :
+    xs !! i = Some x ↔ map_seq (M:=M A) start xs !! (start + i) = Some x.
+  Proof.
+    revert start i. induction xs as [|x' xs IH]; intros start i; simpl.
+    { by rewrite lookup_empty, lookup_nil. }
+    destruct i as [|i]; simpl.
+    { by rewrite Nat.add_0_r, lookup_insert. }
+    rewrite lookup_insert_ne by lia. by rewrite (IH (S start)), Nat.add_succ_r.
+  Qed.
+  Lemma lookup_map_seq_Some start xs i x :
+    map_seq (M:=M A) start xs !! i = Some x ↔ start ≤ i ∧ xs !! (i - start) = Some x.
+  Proof.
+    destruct (decide (start ≤ i)) as [|Hsi].
+    { rewrite (lookup_map_seq_Some_inv start).
+      replace (start + (i - start)) with i by lia. naive_solver. }
+    split; [|naive_solver]. intros Hi; destruct Hsi.
+    revert start i Hi. induction xs as [|x' xs IH]; intros start i; simpl.
+    { by rewrite lookup_empty. }
+    rewrite lookup_insert_Some; intros [[-> ->]|[? ?%IH]]; lia.
+  Qed.
+
+  Lemma lookup_map_seq_None start xs i :
+    map_seq (M:=M A) start xs !! i = None ↔ i < start ∨ start + length xs ≤ i.
+  Proof.
+    trans (¬start ≤ i ∨ ¬is_Some (xs !! (i - start))).
+    - rewrite eq_None_not_Some, <-not_and_l. unfold is_Some.
+      setoid_rewrite lookup_map_seq_Some. naive_solver.
+    - rewrite lookup_lt_is_Some. lia.
+  Qed.
+
+  Lemma lookup_map_seq_0 xs i : map_seq (M:=M A) 0 xs !! i = xs !! i.
+  Proof. apply option_eq; intros x. by rewrite (lookup_map_seq_Some_inv 0). Qed.
+
+  Lemma map_seq_singleton start x :
+    map_seq (M:=M A) start [x] = {[ start := x ]}.
+  Proof. done. Qed.
+
+  Lemma map_seq_app_disjoint start xs1 xs2 :
+    map_seq (M:=M A) start xs1 ##ₘ map_seq (start + length xs1) xs2.
+  Proof.
+    apply map_disjoint_spec; intros i x1 x2. rewrite !lookup_map_seq_Some.
+    intros [??%lookup_lt_Some] [??%lookup_lt_Some]; lia.
+  Qed.
+  Lemma map_seq_app start xs1 xs2 :
+    map_seq start (xs1 ++ xs2)
+    =@{M A} map_seq start xs1 ∪ map_seq (start + length xs1) xs2.
+  Proof.
+    revert start. induction xs1 as [|x1 xs1 IH]; intros start; simpl.
+    - by rewrite (left_id_L _ _), Nat.add_0_r.
+    - by rewrite IH, Nat.add_succ_r, !insert_union_singleton_l, (assoc_L _).
+  Qed.
+
+  Lemma map_seq_cons_disjoint start xs x :
+    map_seq (M:=M A) (S start) xs !! start = None.
+  Proof. rewrite lookup_map_seq_None. lia. Qed.
+  Lemma map_seq_cons start xs x :
+    map_seq start (x :: xs) =@{M A} <[start:=x]> (map_seq (S start) xs).
+  Proof. done. Qed.
+
+  Lemma map_seq_snoc_disjoint start xs x :
+    map_seq (M:=M A) start xs !! (start+length xs) = None.
+  Proof. rewrite lookup_map_seq_None. lia. Qed.
+  Lemma map_seq_snoc start xs x :
+    map_seq start (xs ++ [x]) =@{M A} <[start+length xs:=x]> (map_seq start xs).
+  Proof.
+    rewrite map_seq_app, map_seq_singleton.
+    by rewrite insert_union_singleton_r by (by rewrite map_seq_snoc_disjoint).
+  Qed.
+End map_seq.
+
 (** * Tactics *)
 (** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint]
 in the hypotheses that involve the empty map [∅], the union [(∪)] or insert
diff --git a/theories/sets.v b/theories/sets.v
index d9c06d42d76d9c626d753995140d462f55a6cc25..05e39f734ac3377daa8f36bd095176640a102045 100644
--- a/theories/sets.v
+++ b/theories/sets.v
@@ -1054,24 +1054,47 @@ Section set_seq.
     - rewrite elem_of_empty. lia.
     - rewrite elem_of_union, elem_of_singleton, IH. lia.
   Qed.
-
-  Lemma set_seq_start_disjoint start len :
+  Global Instance set_unfold_seq start len :
+    SetUnfold (x ∈ set_seq (C:=C) start len) (start ≤ x < start + len).
+  Proof. constructor; apply elem_of_set_seq. Qed.
+
+  Lemma set_seq_plus_disjoint start len1 len2 :
+    set_seq (C:=C) start len1 ## set_seq (start + len1) len2.
+  Proof. set_solver by lia. Qed.
+  Lemma set_seq_plus start len1 len2 :
+    set_seq (C:=C) start (len1 + len2)
+    ≡ set_seq start len1 ∪ set_seq (start + len1) len2.
+  Proof. set_solver by lia. Qed.
+  Lemma set_seq_plus_L `{!LeibnizEquiv C} start len1 len2 :
+    set_seq (C:=C) start (len1 + len2)
+    = set_seq start len1 ∪ set_seq (start + len1) len2.
+  Proof. unfold_leibniz. apply set_seq_plus. Qed.
+
+  Lemma set_seq_S_start_disjoint start len :
     {[ start ]} ## set_seq (C:=C) (S start) len.
-  Proof. intros x. rewrite elem_of_singleton, elem_of_set_seq. lia. Qed.
+  Proof. set_solver by lia. Qed.
+  Lemma set_seq_S_start start len :
+    set_seq (C:=C) start (S len) ≡ {[ start ]} ∪ set_seq (S start) len.
+  Proof. set_solver by lia. Qed.
 
-  Lemma set_seq_S_disjoint start len :
+  Lemma set_seq_S_end_disjoint start len :
     {[ start + len ]} ## set_seq (C:=C) start len.
-  Proof. intros x. rewrite elem_of_singleton, elem_of_set_seq. lia. Qed.
-
-  Lemma set_seq_S_union start len :
+  Proof. set_solver by lia. Qed.
+  Lemma set_seq_S_end_union start len :
     set_seq start (S len) ≡@{C} {[ start + len ]} ∪ set_seq start len.
+  Proof. set_solver by lia. Qed.
+  Lemma set_seq_S_end_union_L `{!LeibnizEquiv C} start len :
+    set_seq start (S len) =@{C} {[ start + len ]} ∪ set_seq start len.
+  Proof. unfold_leibniz. apply set_seq_S_end_union. Qed.
+
+  Lemma list_to_set_seq start len :
+    list_to_set (seq start len) =@{C} set_seq start len.
+  Proof. revert start; induction len; intros; f_equal/=; auto. Qed.
+
+  Lemma set_seq_finite start len : set_finite (set_seq (C:=C) start len).
   Proof.
-    intros x. rewrite elem_of_union, elem_of_singleton, !elem_of_set_seq. lia.
+    exists (seq start len); intros x. rewrite <-list_to_set_seq. set_solver.
   Qed.
-
-  Lemma set_seq_S_union_L `{!LeibnizEquiv C} start len :
-    set_seq start (S len) =@{C} {[ start + len ]} ∪ set_seq start len.
-  Proof. unfold_leibniz. apply set_seq_S_union. Qed.
 End set_seq.
 
 (** Mimimal elements *)