From cb08e14fcda067b44fde9407de3610f80ec562e6 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 24 Feb 2020 12:56:55 +0100 Subject: [PATCH] Put `LeibnizEquiv` lemmas for `dom` in section. --- theories/fin_map_dom.v | 54 ++++++++++++++++++++++-------------------- 1 file changed, 28 insertions(+), 26 deletions(-) diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v index 0674cbfd..3c430a6b 100644 --- a/theories/fin_map_dom.v +++ b/theories/fin_map_dom.v @@ -142,32 +142,34 @@ Global Instance dom_proper_L `{!Equiv A, !LeibnizEquiv D} : Proper ((≡@{M A}) ==> (=)) (dom D) | 0. Proof. intros ???. unfold_leibniz. by apply dom_proper. Qed. -Context `{!LeibnizEquiv D}. -Lemma dom_map_filter_L {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A) X : - (∀ i, i ∈ X ↔ ∃ x, m !! i = Some x ∧ P (i, x)) → - dom D (filter P m) = X. -Proof. unfold_leibniz. apply dom_map_filter. Qed. -Lemma dom_empty_L {A} : dom D (@empty (M A) _) = ∅. -Proof. unfold_leibniz; apply dom_empty. Qed. -Lemma dom_empty_inv_L {A} (m : M A) : dom D m = ∅ → m = ∅. -Proof. by intros; apply dom_empty_inv; unfold_leibniz. Qed. -Lemma dom_alter_L {A} f (m : M A) i : dom D (alter f i m) = dom D m. -Proof. unfold_leibniz; apply dom_alter. Qed. -Lemma dom_insert_L {A} (m : M A) i x : dom D (<[i:=x]>m) = {[ i ]} ∪ dom D m. -Proof. unfold_leibniz; apply dom_insert. Qed. -Lemma dom_singleton_L {A} (i : K) (x : A) : dom D ({[i := x]} : M A) = {[ i ]}. -Proof. unfold_leibniz; apply dom_singleton. Qed. -Lemma dom_delete_L {A} (m : M A) i : dom D (delete i m) = dom D m ∖ {[ i ]}. -Proof. unfold_leibniz; apply dom_delete. Qed. -Lemma dom_union_L {A} (m1 m2 : M A) : dom D (m1 ∪ m2) = dom D m1 ∪ dom D m2. -Proof. unfold_leibniz; apply dom_union. Qed. -Lemma dom_intersection_L {A} (m1 m2 : M A) : - dom D (m1 ∩ m2) = dom D m1 ∩ dom D m2. -Proof. unfold_leibniz; apply dom_intersection. Qed. -Lemma dom_difference_L {A} (m1 m2 : M A) : dom D (m1 ∖ m2) = dom D m1 ∖ dom D m2. -Proof. unfold_leibniz; apply dom_difference. Qed. -Lemma dom_fmap_L {A B} (f : A → B) (m : M A) : dom D (f <$> m) = dom D m. -Proof. unfold_leibniz; apply dom_fmap. Qed. +Section leibniz. + Context `{!LeibnizEquiv D}. + Lemma dom_map_filter_L {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A) X : + (∀ i, i ∈ X ↔ ∃ x, m !! i = Some x ∧ P (i, x)) → + dom D (filter P m) = X. + Proof. unfold_leibniz. apply dom_map_filter. Qed. + Lemma dom_empty_L {A} : dom D (@empty (M A) _) = ∅. + Proof. unfold_leibniz; apply dom_empty. Qed. + Lemma dom_empty_inv_L {A} (m : M A) : dom D m = ∅ → m = ∅. + Proof. by intros; apply dom_empty_inv; unfold_leibniz. Qed. + Lemma dom_alter_L {A} f (m : M A) i : dom D (alter f i m) = dom D m. + Proof. unfold_leibniz; apply dom_alter. Qed. + Lemma dom_insert_L {A} (m : M A) i x : dom D (<[i:=x]>m) = {[ i ]} ∪ dom D m. + Proof. unfold_leibniz; apply dom_insert. Qed. + Lemma dom_singleton_L {A} (i : K) (x : A) : dom D ({[i := x]} : M A) = {[ i ]}. + Proof. unfold_leibniz; apply dom_singleton. Qed. + Lemma dom_delete_L {A} (m : M A) i : dom D (delete i m) = dom D m ∖ {[ i ]}. + Proof. unfold_leibniz; apply dom_delete. Qed. + Lemma dom_union_L {A} (m1 m2 : M A) : dom D (m1 ∪ m2) = dom D m1 ∪ dom D m2. + Proof. unfold_leibniz; apply dom_union. Qed. + Lemma dom_intersection_L {A} (m1 m2 : M A) : + dom D (m1 ∩ m2) = dom D m1 ∩ dom D m2. + Proof. unfold_leibniz; apply dom_intersection. Qed. + Lemma dom_difference_L {A} (m1 m2 : M A) : dom D (m1 ∖ m2) = dom D m1 ∖ dom D m2. + Proof. unfold_leibniz; apply dom_difference. Qed. + Lemma dom_fmap_L {A B} (f : A → B) (m : M A) : dom D (f <$> m) = dom D m. + Proof. unfold_leibniz; apply dom_fmap. Qed. +End leibniz. End fin_map_dom. Lemma dom_seq `{FinMapDom nat M D} {A} start (xs : list A) : -- GitLab