diff --git a/theories/relations.v b/theories/relations.v index 8b8a3696a8f9b21a28b012eccc5e783d95e0125c..2684b6475b37ec61404e21b533395c836ffc3748 100644 --- a/theories/relations.v +++ b/theories/relations.v @@ -137,6 +137,8 @@ Section closure. Lemma nsteps_once x y : R x y → nsteps R 1 x y. Proof. eauto. Qed. + Lemma nsteps_once_inv x y : nsteps R 1 x y → R x y. + Proof. inversion 1 as [|???? Hhead Htail]; inversion Htail; by subst. Qed. Lemma nsteps_trans n m x y z : nsteps R n x y → nsteps R m y z → nsteps R (n + m) x z. Proof. induction 1; simpl; eauto. Qed.