(** This file collects facts on proof irrelevant types/propositions. *) From stdpp Require Export base. Set Default Proof Using "Type". Hint Extern 200 (ProofIrrel _) => progress (lazy beta) : typeclass_instances. Instance True_pi: ProofIrrel True. Proof. intros [] []; reflexivity. Qed. Instance False_pi: ProofIrrel False. Proof. intros []. Qed. Instance unit_pi: ProofIrrel (). Proof. intros [] []; reflexivity. Qed. Instance and_pi (A B : Prop) : ProofIrrel A → ProofIrrel B → ProofIrrel (A ∧ B). Proof. intros ?? [??] [??]. f_equal; trivial. Qed. Instance prod_pi (A B : Type) : ProofIrrel A → ProofIrrel B → ProofIrrel (A * B). Proof. intros ?? [??] [??]. f_equal; trivial. Qed. Instance eq_pi {A} (x : A) `{∀ z, Decision (x = z)} (y : A) : ProofIrrel (x = y). Proof. set (f z (H : x = z) := match decide (x = z) return x = z with | left H => H | right H' => False_rect _ (H' H) end). assert (∀ z (H : x = z), eq_trans (eq_sym (f x (eq_refl x))) (f z H) = H) as help. { intros ? []. destruct (f x eq_refl); tauto. } intros p q. rewrite <-(help _ p), <-(help _ q). unfold f at 2 4. destruct (decide _). reflexivity. exfalso; tauto. Qed. Instance Is_true_pi (b : bool) : ProofIrrel (Is_true b). Proof. destruct b; simpl; apply _. Qed. Lemma sig_eq_pi `(P : A → Prop) `{∀ x, ProofIrrel (P x)} (x y : sig P) : x = y ↔ `x = `y. Proof. split; [intros <-; reflexivity|]. destruct x as [x Hx], y as [y Hy]; simpl; intros; subst. f_equal. apply proof_irrel. Qed. Lemma exists_proj1_pi `(P : A → Prop) `{∀ x, ProofIrrel (P x)} (x : sig P) p : `x ↾ p = x. Proof. apply (sig_eq_pi _); reflexivity. Qed.