Commit 285fe0ab by Robbert Krebbers

### Bump Iris (⊢ changes).

parent 339a19a1
Pipeline #28849 failed with stage
in 15 minutes and 12 seconds
 ... ... @@ -73,7 +73,7 @@ Section proof2. proofs we tend to inline simple lemmas like these, but they are here to make things easier to understand. *) Lemma ghost_var_alloc n : (|==> ∃ γ, own γ (●E n) ∗ own γ (◯E n))%I. ⊢ |==> ∃ γ, own γ (●E n) ∗ own γ (◯E n). Proof. iMod (own_alloc (●E n ⋅ ◯E n)) as (γ) "[??]". - by apply excl_auth_valid. ... ...
 ... ... @@ -31,7 +31,7 @@ Section proof. (** The same helping lemmas for ghost variables that we have already seen in the previous exercise. *) Lemma ghost_var_alloc b : (|==> ∃ γ, own γ (●E b) ∗ own γ (◯E b))%I. ⊢ |==> ∃ γ, own γ (●E b) ∗ own γ (◯E b). Proof. iMod (own_alloc (●E b ⋅ ◯E b)) as (γ) "[??]". - by apply excl_auth_valid. ... ...
 ... ... @@ -9,7 +9,7 @@ dev-repo: "git+https://gitlab.mpi-sws.org/iris/tutorial-popl18.git" synopsis: "The Iris tutorial at POPL 2018" depends: [ "coq-iris" { (= "dev.2020-03-10.6.79f576aa") | (= "dev") } "coq-iris" { (= "dev.2020-03-16.0.62be0a86") | (= "dev") } ] build: [make "-j%{jobs}%"] ... ...
 ... ... @@ -77,7 +77,7 @@ Section proof2. proofs we tend to inline simple lemmas like these, but they are here to make things easier to understand. *) Lemma ghost_var_alloc n : (|==> ∃ γ, own γ (●E n) ∗ own γ (◯E n))%I. ⊢ |==> ∃ γ, own γ (●E n) ∗ own γ (◯E n). Proof. iMod (own_alloc (●E n ⋅ ◯E n)) as (γ) "[??]". - by apply excl_auth_valid. ... ...
 ... ... @@ -31,7 +31,7 @@ Section proof. (** The same helping lemmas for ghost variables that we have already seen in the previous exercise. *) Lemma ghost_var_alloc b : (|==> ∃ γ, own γ (●E b) ∗ own γ (◯E b))%I. ⊢ |==> ∃ γ, own γ (●E b) ∗ own γ (◯E b). Proof. iMod (own_alloc (●E b ⋅ ◯E b)) as (γ) "[??]". - by apply excl_auth_valid. ... ...
 ... ... @@ -54,7 +54,7 @@ Section proof2. (* Rules for fractional ghost variables (proved from generic principles) *) Lemma frac_auth_alloc n : (|==> ∃ γ, own γ (●F n) ∗ own γ (◯F{1} n))%I. ⊢ |==> ∃ γ, own γ (●F n) ∗ own γ (◯F{1} n). Proof. iMod (own_alloc (●F n ⋅ ◯F n)) as (γ) "[??]"; eauto with iFrame. by apply frac_auth_valid. ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!