lang.v 14.6 KB
Newer Older
1
From iris.program_logic Require Export ectx_language ectxi_language.
2
From iris.algebra Require Export ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From fast_string Require Export fast_string_lib.
Ralf Jung's avatar
Ralf Jung committed
4
From stdpp Require Import gmap.
5
Set Default Proof Using "Type".
6

7
Module heap_lang.
8
9
Open Scope Z_scope.

10
(** Expressions and vals. *)
11
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
12

13
Inductive base_lit : Set :=
14
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc).
15
Inductive un_op : Set :=
16
  | NegOp | MinusUnOp.
17
18
19
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

20
Inductive binder := BAnon | BNamed : string  binder.
Ralf Jung's avatar
Ralf Jung committed
21
22
Delimit Scope binder_scope with bind.
Bind Scope binder_scope with binder.
23
24
25
Definition cons_binder (mx : binder) (X : list string) : list string :=
  match mx with BAnon => X | BNamed x => x :: X end.
Infix ":b:" := cons_binder (at level 60, right associativity).
26
Instance binder_eq_dec_eq : EqDecision binder.
27
28
29
30
31
32
33
34
35
Proof. solve_decision. Defined.

Instance set_unfold_cons_binder x mx X P :
  SetUnfold (x  X) P  SetUnfold (x  mx :b: X) (BNamed x = mx  P).
Proof.
  constructor. rewrite -(set_unfold (x  X) P).
  destruct mx; rewrite /= ?elem_of_cons; naive_solver.
Qed.

36
Inductive expr :=
37
  (* Base lambda calculus *)
38
39
40
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
41
42
  (* Base types and their operations *)
  | Lit (l : base_lit)
43
44
45
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
46
  (* Products *)
47
48
49
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
50
  (* Sums *)
51
52
53
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
54
  (* Concurrency *)
55
  | Fork (e : expr)
56
  (* Heap *)
57
58
59
60
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | CAS (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
61

62
Bind Scope expr_scope with expr.
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Fixpoint is_closed (X : list string) (e : expr) : bool :=
  match e with
  | Var x => bool_decide (x  X)
  | Rec f x e => is_closed (f :b: x :b: X) e
  | Lit _ => true
  | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e =>
     is_closed X e
  | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 =>
     is_closed X e1 && is_closed X e2
  | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 =>
     is_closed X e0 && is_closed X e1 && is_closed X e2
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
77
Class Closed (X : list string) (e : expr) := closed : is_closed X e.
78
79
80
81
Instance closed_proof_irrel env e : ProofIrrel (Closed env e).
Proof. rewrite /Closed. apply _. Qed.
Instance closed_decision env e : Decision (Closed env e).
Proof. rewrite /Closed. apply _. Qed.
82

83
Inductive val :=
84
  | RecV (f x : binder) (e : expr) `{!Closed (f :b: x :b: []) e}
85
  | LitV (l : base_lit)
86
87
  | PairV (v1 v2 : val)
  | InjLV (v : val)
88
  | InjRV (v : val).
Ralf Jung's avatar
Ralf Jung committed
89

90
Bind Scope val_scope with val.
91

92
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
93
  match v with
94
  | RecV f x e _ => Rec f x e
95
  | LitV l => Lit l
96
97
98
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
Ralf Jung's avatar
Ralf Jung committed
99
  end.
100

101
Fixpoint to_val (e : expr) : option val :=
102
  match e with
103
104
  | Rec f x e =>
     if decide (Closed (f :b: x :b: []) e) then Some (RecV f x e) else None
105
  | Lit l => Some (LitV l)
106
107
108
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
Ralf Jung's avatar
Ralf Jung committed
109
  | _ => None
110
111
  end.

112
113
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof.
  by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _).
Qed.

Lemma of_to_val e v : to_val e = Some v  of_val v = e.
Proof.
  revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal.
Qed.

Instance of_val_inj : Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.

129
Instance base_lit_eq_dec : EqDecision base_lit.
130
Proof. solve_decision. Defined.
131
Instance un_op_eq_dec : EqDecision un_op.
132
Proof. solve_decision. Defined.
133
Instance bin_op_eq_dec : EqDecision bin_op.
134
Proof. solve_decision. Defined.
135
Instance expr_eq_dec : EqDecision expr.
136
Proof. solve_decision. Defined.
137
Instance val_eq_dec : EqDecision val.
138
Proof.
139
 refine (λ v v', cast_if (decide (of_val v = of_val v'))); abstract naive_solver.
140
141
142
143
144
145
146
147
148
Defined.

Instance expr_inhabited : Inhabited expr := populate (Lit LitUnit).
Instance val_inhabited : Inhabited val := populate (LitV LitUnit).

Canonical Structure stateC := leibnizC state.
Canonical Structure valC := leibnizC val.
Canonical Structure exprC := leibnizC expr.

149
(** Evaluation contexts *)
150
Inductive ectx_item :=
151
  | AppLCtx (e2 : expr)
152
  | AppRCtx (v1 : val)
153
  | UnOpCtx (op : un_op)
154
  | BinOpLCtx (op : bin_op) (e2 : expr)
155
  | BinOpRCtx (op : bin_op) (v1 : val)
156
157
  | IfCtx (e1 e2 : expr)
  | PairLCtx (e2 : expr)
158
159
160
161
162
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
163
  | CaseCtx (e1 : expr) (e2 : expr)
164
165
  | AllocCtx
  | LoadCtx
166
  | StoreLCtx (e2 : expr)
167
  | StoreRCtx (v1 : val)
168
  | CasLCtx (e1 : expr) (e2 : expr)
169
  | CasMCtx (v0 : val) (e2 : expr)
170
  | CasRCtx (v0 : val) (v1 : val).
171

172
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
173
174
175
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
176
177
178
179
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
180
181
182
183
184
185
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
186
  | CaseCtx e1 e2 => Case e e1 e2
187
188
  | AllocCtx => Alloc e
  | LoadCtx => Load e
189
  | StoreLCtx e2 => Store e e2 
190
  | StoreRCtx v1 => Store (of_val v1) e
191
192
193
  | CasLCtx e1 e2 => CAS e e1 e2
  | CasMCtx v0 e2 => CAS (of_val v0) e e2
  | CasRCtx v0 v1 => CAS (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
194
195
  end.

196
(** Substitution *)
197
198
199
Fixpoint subst (x : string) (es : expr) (e : expr)  : expr :=
  match e with
  | Var y => if decide (x = y) then es else Var y
200
  | Rec f y e =>
201
202
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x es e else e
  | App e1 e2 => App (subst x es e1) (subst x es e2)
203
  | Lit l => Lit l
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  | UnOp op e => UnOp op (subst x es e)
  | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
  | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
  | Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
  | Fst e => Fst (subst x es e)
  | Snd e => Snd (subst x es e)
  | InjL e => InjL (subst x es e)
  | InjR e => InjR (subst x es e)
  | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
  | Fork e => Fork (subst x es e)
  | Alloc e => Alloc (subst x es e)
  | Load e => Load (subst x es e)
  | Store e1 e2 => Store (subst x es e1) (subst x es e2)
  | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2)
218
  end.
219

220
Definition subst' (mx : binder) (es : expr) : expr  expr :=
221
  match mx with BNamed x => subst x es | BAnon => id end.
222

223
(** The stepping relation *)
224
225
226
227
Definition un_op_eval (op : un_op) (v : val) : option val :=
  match op, v with
  | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
  | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
228
229
230
  | _, _ => None
  end.

231
232
233
234
235
236
237
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
  match op, v1, v2 with
  | PlusOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitInt (n1 + n2)
  | MinusOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitInt (n1 - n2)
  | LeOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitBool $ bool_decide (n1 < n2)
  | EqOp, v1, v2 => Some $ LitV $ LitBool $ bool_decide (v1 = v2)
238
239
240
  | _, _, _ => None
  end.

241
Inductive head_step : expr  state  expr  state  list (expr)  Prop :=
242
  | BetaS f x e1 e2 v2 e' σ :
243
     to_val e2 = Some v2 
244
     Closed (f :b: x :b: []) e1 
245
     e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) 
246
     head_step (App (Rec f x e1) e2) σ e' σ []
247
248
249
250
251
252
253
254
  | UnOpS op e v v' σ :
     to_val e = Some v 
     un_op_eval op v = Some v'  
     head_step (UnOp op e) σ (of_val v') σ []
  | BinOpS op e1 e2 v1 v2 v' σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     bin_op_eval op v1 v2 = Some v'  
     head_step (BinOp op e1 e2) σ (of_val v') σ []
255
  | IfTrueS e1 e2 σ :
256
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ []
257
  | IfFalseS e1 e2 σ :
258
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ []
259
260
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
261
     head_step (Fst (Pair e1 e2)) σ e1 σ []
262
263
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
264
     head_step (Snd (Pair e1 e2)) σ e2 σ []
265
  | CaseLS e0 v0 e1 e2 σ :
266
     to_val e0 = Some v0 
267
     head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ []
268
  | CaseRS e0 v0 e1 e2 σ :
269
     to_val e0 = Some v0 
270
     head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ []
271
  | ForkS e σ:
272
     head_step (Fork e) σ (Lit LitUnit) σ [e]
273
274
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
275
     head_step (Alloc e) σ (Lit $ LitLoc l) (<[l:=v]>σ) []
276
277
  | LoadS l v σ :
     σ !! l = Some v 
278
     head_step (Load (Lit $ LitLoc l)) σ (of_val v) σ []
279
280
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
281
     head_step (Store (Lit $ LitLoc l) e) σ (Lit LitUnit) (<[l:=v]>σ) []
282
283
284
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
285
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool false) σ []
286
287
288
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
289
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) [].
Ralf Jung's avatar
Ralf Jung committed
290

291
(** Basic properties about the language *)
292
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
293
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
294

295
296
297
Lemma fill_item_val Ki e :
  is_Some (to_val (fill_item Ki e))  is_Some (to_val e).
Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed.
298

299
Lemma val_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs  to_val e1 = None.
300
Proof. destruct 1; naive_solver. Qed.
301

302
303
Lemma head_ctx_step_val Ki e σ1 e2 σ2 efs :
  head_step (fill_item Ki e) σ1 e2 σ2 efs  is_Some (to_val e).
304
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; by eauto. Qed.
305

306
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
307
  to_val e1 = None  to_val e2 = None 
308
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
309
Proof.
310
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
311
    repeat match goal with
312
313
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
314
Qed.
315

316
317
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
318
  to_val e = Some v  head_step (Alloc e) σ (Lit (LitLoc l)) (<[l:=v]>σ) [].
319
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
320

321
322
323
324
325
(* Misc *)
Lemma to_val_rec f x e `{!Closed (f :b: x :b: []) e} :
  to_val (Rec f x e) = Some (RecV f x e).
Proof. rewrite /to_val. case_decide=> //. do 2 f_equal; apply proof_irrel. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
326
(** Closed expressions *)
327
Lemma is_closed_weaken X Y e : is_closed X e  X  Y  is_closed Y e.
Robbert Krebbers's avatar
Robbert Krebbers committed
328
329
Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed.

330
Lemma is_closed_weaken_nil X e : is_closed [] e  is_closed X e.
331
Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
Lemma is_closed_of_val X v : is_closed X (of_val v).
Proof. apply is_closed_weaken_nil. induction v; simpl; auto. Qed.

Lemma is_closed_subst X e x es :
  is_closed [] es  is_closed (x :: X) e  is_closed X (subst x es e).
Proof.
  intros ?. revert X.
  induction e=> X /= ?; destruct_and?; split_and?; simplify_option_eq;
    try match goal with
    | H : ¬(_  _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable]
    end; eauto using is_closed_weaken with set_solver.
Qed.
Lemma is_closed_do_subst' X e x es :
  is_closed [] es  is_closed (x :b: X) e  is_closed X (subst' x es e).
Proof. destruct x; eauto using is_closed_subst. Qed.

(* Substitution *)
Lemma subst_is_closed X e x es : is_closed X e  x  X  subst x es e = e.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Proof.
352
  revert X. induction e=> X /=; rewrite ?bool_decide_spec ?andb_True=> ??;
Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
    repeat case_decide; simplify_eq/=; f_equal; intuition eauto with set_solver.
Qed.
355

356
357
Lemma subst_is_closed_nil e x es : is_closed [] e  subst x es e = e.
Proof. intros. apply subst_is_closed with []; set_solver. Qed.
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
Lemma subst_subst e x es es' :
  Closed [] es'  subst x es (subst x es' e) = subst x es' e.
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst' e x es es' :
  Closed [] es'  subst' x es (subst' x es' e) = subst' x es' e.
Proof. destruct x; simpl; auto using subst_subst. Qed.

Lemma subst_subst_ne e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst x es (subst y es' e) = subst y es' (subst x es e).
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using eq_sym, subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst_ne' e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst' x es (subst' y es' e) = subst' y es' (subst' x es e).
Proof. destruct x, y; simpl; auto using subst_subst_ne with congruence. Qed.

Lemma subst_rec' f y e x es :
  x = f  x = y  x = BAnon 
  subst' x es (Rec f y e) = Rec f y e.
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
Lemma subst_rec_ne' f y e x es :
  (x  f  f = BAnon)  (x  y  y = BAnon) 
  subst' x es (Rec f y e) = Rec f y (subst' x es e).
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
389
390
391
End heap_lang.

(** Language *)
392
393
Program Instance heap_ectxi_lang :
  EctxiLanguage
394
    (heap_lang.expr) heap_lang.val heap_lang.ectx_item heap_lang.state := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
395
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
396
  fill_item := heap_lang.fill_item; head_step := heap_lang.head_step
Robbert Krebbers's avatar
Robbert Krebbers committed
397
|}.
398
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
399
400
  heap_lang.val_stuck, heap_lang.fill_item_val, heap_lang.fill_item_no_val_inj,
  heap_lang.head_ctx_step_val.
401

402
Canonical Structure heap_lang := ectx_lang (heap_lang.expr).
403

404
(* Prefer heap_lang names over ectx_language names. *)
405
Export heap_lang.
406
407
408
409
410
411
412
413
414
415

(** Define some derived forms *)
Notation Lam x e := (Rec BAnon x e).
Notation Let x e1 e2 := (App (Lam x e2) e1).
Notation Seq e1 e2 := (Let BAnon e1 e2).
Notation LamV x e := (RecV BAnon x e).
Notation LetCtx x e2 := (AppRCtx (LamV x e2)).
Notation SeqCtx e2 := (LetCtx BAnon e2).
Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)).