proofmode.v 38.4 KB
Newer Older
1
From iris.proofmode Require Import tactics intro_patterns.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

Ralf Jung's avatar
Ralf Jung committed
4
Section tests.
5
Context {PROP : bi}.
Robbert Krebbers's avatar
Robbert Krebbers committed
6
Implicit Types P Q R : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
9
10
Lemma test_eauto_emp_isplit_biwand P : emp  P - P.
Proof. eauto 6. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
11
Lemma test_eauto_isplit_biwand P :  P - P.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
12
Proof. eauto. Qed.
13

Gregory Malecha's avatar
Gregory Malecha committed
14
Fixpoint test_fixpoint (n : nat) {struct n} : True  emp @{PROP}  (n + 0)%nat = n .
15
16
17
18
19
20
Proof.
  case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
  iIntros (_) "_".
  by iDestruct (test_fixpoint with "[//]") as %->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
21
Check "demo_0".
22
Lemma demo_0 P Q :  (P  Q) - ( x, x = 0  x = 1)  (Q  P).
23
Proof.
24
  iIntros "H #H2". Show. iDestruct "H" as "###H".
25
  (* should remove the disjunction "H" *)
26
  iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
27
28
29
30
  (* should keep the disjunction "H" because it is instantiated *)
  iDestruct ("H2" $! 10) as "[%|%]". done. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat  PROP) `{!Affine P4, !Absorbing P2} :
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  emp -
33
34
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
35
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
37
38
39
40
41
42
43
44
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
  - iFrame "H3". iRight. auto.
  - iSplitL "HQ". iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
49
Lemma demo_3 P1 P2 P3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
  P1  P2  P3 - P1   (P2   x, (P3  x = 0)  P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
52

53
54
55
56
57
58
59
60
Lemma test_pure_space_separated P1 :
  <affine> True  P1 - P1.
Proof.
  (* [% H] should be parsed as two separate patterns and not the pure name
  [H] *)
  iIntros "[% H] //".
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
61
62
Definition foo (P : PROP) := (P - P)%I.
Definition bar : PROP := ( P, foo P)%I.
63

Gregory Malecha's avatar
Gregory Malecha committed
64
Lemma test_unfold_constants :  bar.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
Proof. iIntros (P) "HP //". Qed.
66

Ralf Jung's avatar
Ralf Jung committed
67
Check "test_iStopProof".
Robbert Krebbers's avatar
Robbert Krebbers committed
68
Lemma test_iStopProof Q : emp - Q - Q.
Ralf Jung's avatar
Ralf Jung committed
69
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofeT} (x y : A) P :
72
   ( z, P - <affine> (z  y)) - (P - P  (x,x)  (y,x)).
73
Proof.
74
  iIntros "#H1 H2".
75
  iRewrite (internal_eq_sym x x with "[# //]").
76
  iRewrite -("H1" $! _ with "[- //]").
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  auto.
78
79
Qed.

Ralf Jung's avatar
Ralf Jung committed
80
Check "test_iDestruct_and_emp".
81
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
82
  P  emp - emp  Q - <affine> (P  Q).
Ralf Jung's avatar
Ralf Jung committed
83
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
84

Gregory Malecha's avatar
Gregory Malecha committed
85
Lemma test_iIntros_persistent P Q `{!Persistent Q} :  (P  Q  P  Q).
86
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
87

Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
93
94
95
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
  Q   (Q - P) - P  Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
  Q  (Q - P) - P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.

96
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
99
  Q  (Q - P) - P  Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q :  Q - Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.

Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} :  Q - Q.
Proof.
  iIntros "#-#HQ".
  (* Since [Q] is affine, it should not add an <affine> modality *)
  Show. done.
Qed.

Lemma test_iDestruct_spatial_noop Q : Q - Q.
Proof. iIntros "-#HQ". done. Qed.

Gregory Malecha's avatar
Gregory Malecha committed
115
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ    φ   P   φ  ψ   P.
116
117
Proof. iIntros (??) "H". auto. Qed.

118
119
120
121
122
123
124
125
126
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat  PROP) :
    x : nat, Ψ x  Ψ x.
Proof.
  iIntros "%".
  (* should be a trivial implication now *)
  Show. auto.
Qed.

Gregory Malecha's avatar
Gregory Malecha committed
127
Lemma test_iIntros_pure_not : @{PROP}  ¬False .
128
129
Proof. by iIntros (?). Qed.

130
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
Gregory Malecha's avatar
Gregory Malecha committed
131
132
    x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x).
133
Proof.
134
  iIntros (a) "*".
135
  iIntros "#Hfoo **".
Robbert Krebbers's avatar
Robbert Krebbers committed
136
  iIntros "_ //".
137
Qed.
138

139
Lemma test_very_fast_iIntros P :
Gregory Malecha's avatar
Gregory Malecha committed
140
   x y : nat,   x = y   P - P.
141
142
Proof. by iIntros. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
143
Definition tc_opaque_test : PROP := tc_opaque ( x : nat,  x = x )%I.
Gregory Malecha's avatar
Gregory Malecha committed
144
Lemma test_iIntros_tc_opaque :  tc_opaque_test.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
Proof. by iIntros (x). Qed.
146

Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
(** Prior to 0b84351c this used to loop, now [iAssumption] instantiates [R] with
[False] and performs false elimination. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
Lemma test_iAssumption_evar_ex_false :  R, R   P, P.
Proof. eexists. iIntros "?" (P). iAssumption. Qed.

152
153
154
Lemma test_iApply_evar P Q R : ( Q, Q - P) - R - P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.

155
156
157
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P - Q - R - Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.

158
159
160
Lemma test_done_goal_evar Q :  P, Q  P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
161
Lemma test_iDestruct_spatial_and P Q1 Q2 : P  (Q1  Q2) - P  Q1.
162
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

Robbert Krebbers's avatar
Robbert Krebbers committed
164
Lemma test_iAssert_persistent P Q : P - Q - True.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
167
168
169
170
171
172
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
173

174
175
176
177
178
Lemma test_iAssert_persistently P :  P - True.
Proof.
  iIntros "HP". iAssert ( P)%I with "[# //]" as "#H". done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
179
Lemma test_iSpecialize_auto_frame P Q R :
180
  (P - True - True - Q - R) - P - Q - R.
181
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
182

Gregory Malecha's avatar
Gregory Malecha committed
183
184
Lemma test_iSpecialize_pure (φ : Prop) Q R :
  φ  (⌜φ⌝ - Q)   Q.
Ralf Jung's avatar
Ralf Jung committed
185
186
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
  φ  (⌜φ⌝ - Q)  Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.

Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
  (⌜φ⌝ - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.

Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
  (P - Q)  Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.

206
Lemma test_iSpecialize_Coq_entailment P Q R :
Gregory Malecha's avatar
Gregory Malecha committed
207
  ( P)  (P - Q)  ( Q).
208
209
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
Lemma test_iSpecialize_intuitionistic P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP").
  iSpecialize ("H" with "[HP]"); first done.
  iSpecialize ("H" with "[]"); first done.
  iSpecialize ("H" with "[-HR]"); first done.
  iSpecialize ("H" with "[#]"); first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]"); first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_2 P Q R :
   P -  (P - P - P - P -  P - P - Q) - R - R   (P  Q).
Proof.
  iIntros "#HP #H HR".
  (* Test that [H] remains in the intuitionistic context *)
  iSpecialize ("H" with "HP") as #.
  iSpecialize ("H" with "[HP]") as #; first done.
  iSpecialize ("H" with "[]") as #; first done.
  iSpecialize ("H" with "[-HR]") as #; first done.
  iSpecialize ("H" with "[#]") as #; first done.
  iFrame "HR".
  iSpecialize ("H" with "[-]") as #; first done.
  by iFrame "#".
Qed.

Lemma test_iSpecialize_intuitionistic_3 P Q R :
  P -  (P - Q) -  (P - <pers> Q) -  (Q - R) - P   (Q  R).
Proof.
  iIntros "HP #H1 #H2 #H3".
  (* Should fail, [Q] is not persistent *)
  Fail iSpecialize ("H1" with "HP") as #.
  (* Should succeed, [<pers> Q] is persistent *)
  iSpecialize ("H2" with "HP") as #.
  (* Should succeed, despite [R] not being persistent, no spatial premises are
  needed to prove [Q] *)
  iSpecialize ("H3" with "H2") as #.
  by iFrame "#".
Qed.

Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
   P -  |==> P.
Proof.
  iIntros "#HP".
  (* Test that [HPupd1] ends up in the intuitionistic context *)
  iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
  (* This should not work, [|==> P] is not persistent. *)
  Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
  done.
Qed.

266
267
268
Lemma test_iSpecialize_evar P : ( R, R - R) - P - P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.

269
270
271
272
Lemma test_iPure_intro_emp R `{!Affine R} :
  R - emp.
Proof. iIntros "HR". by iPureIntro. Qed.

273
274
275
276
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
  P - Q  R - emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.

277
278
279
280
281
282
283
Lemma test_iPure_intro (φ : nat  Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat  Prop) P Q R `{!Persistent Q} :
  φ 0  P - Q  R -  x : nat, <affine>  φ x    φ x .
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.

Ralf Jung's avatar
Ralf Jung committed
284
Lemma test_fresh P Q:
285
286
287
288
289
  (P  Q) - (P  Q).
Proof.
  iIntros "H".
  let H1 := iFresh in
  let H2 := iFresh in
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
290
  let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
291
292
293
294
  iDestruct "H" as pat.
  iFrame.
Qed.

295
296
(* Test for issue #288 *)
(* FIXME: Restore once we drop support for Coq 8.8 and Coq 8.9.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
298
299
300
301
302
303
Lemma test_iExists_unused : (∃ P : PROP, ∃ x : nat, P)%I.
Proof.
  iExists _.
  iExists 10.
  iAssert emp%I as "H"; first done.
  iExact "H".
Qed.
304
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
305

306
(* Check coercions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Lemma test_iExist_coercion (P : Z  PROP) : ( x, P x) -  x, P x.
308
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
309

Gregory Malecha's avatar
Gregory Malecha committed
310
Lemma test_iExist_tc `{Set_ A C} P :   x1 x2 : gset positive, P - P.
311
312
313
Proof. iExists {[ 1%positive ]}, . auto. Qed.

Lemma test_iSpecialize_tc P : ( x y z : gset positive, P) - P.
314
315
Proof.
  iIntros "H".
Ralf Jung's avatar
Ralf Jung committed
316
  (* FIXME: this [unshelve] and [apply _] should not be needed. *)
317
318
  unshelve iSpecialize ("H" $!  {[ 1%positive ]} ); try apply _. done.
Qed.
319

320
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofeT} (φ : Prop) (y z : A) :
321
  φ  <affine> y  z - ( φ    φ   y  z : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
  BiAffine PROP 
   P1 - Q2 - P2 - (P1  P2  False  P2)  (Q1  Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P - (True  True)  P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.

Lemma test_iFrame_conjunction_1 P Q :
  P - Q - (P  Q)  (P  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
  P - Q - (P  P)  (Q  Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.

338
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P - Q -  P  Q.
339
340
Proof. iIntros "H1 H2". by iFrame "H1". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
Lemma test_iAssert_modality P :  False -  P.
Proof.
  iIntros "HF".
344
  iAssert (<affine> False)%I with "[> -]" as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
345
346
  by iMod "HF".
Qed.
347

348
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
349
  <affine>  P -  <affine> P.
350
351
Proof. iIntros "H". iMod "H". done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
352
Lemma test_iAssumption_False P : False - P.
353
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354

355
356
357
358
359
360
Lemma test_iAssumption_coq_1 P Q : ( Q)  <affine> P - Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Lemma test_iAssumption_coq_2 P Q : (  Q)  <affine> P -  Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
361
(* Check instantiation and dependent types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Lemma test_iSpecialize_dependent_type (P :  n, vec nat n  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
363
364
365
366
367
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368

369
370
371
372
373
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat  PROP) l x :
  x  l  ([ list] y  l, Φ y) - Φ x.
Proof.
  iIntros (Hp) "HT".
374
  iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
375
376
377
  done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
378
379
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R  False.
380
Proof. eauto 10 with iFrame. Qed.
381

382
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
Robbert Krebbers's avatar
Robbert Krebbers committed
383
  P - Q - R  R  Q  P  R  False.
384
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
385

386
387
388
389
Lemma test_iCombine_frame P Q R `{!Persistent R} :
  P - Q - R  R  Q  P  R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
390
Lemma test_iNext_evar P : P - True.
Ralf Jung's avatar
Ralf Jung committed
391
392
393
394
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
395

396
397
Lemma test_iNext_sep1 P Q (R1 := (P  Q)%I) :
  ( P   Q)  R1 -  ((P  Q)  R1).
Robbert Krebbers's avatar
Robbert Krebbers committed
398
399
400
401
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
402

Robbert Krebbers's avatar
Robbert Krebbers committed
403
Lemma test_iNext_sep2 P Q :  P   Q -  (P  Q).
404
405
406
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
407

Robbert Krebbers's avatar
Robbert Krebbers committed
408
Lemma test_iNext_quantifier {A} (Φ : A  A  PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
409
410
411
  ( y,  x,  Φ x y) -  ( y,  x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.

412
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofeT} (f : A -n> A) x y :
413
414
415
  Next x  Next y - (Next (f x)  Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
416
Lemma test_iFrame_persistent (P Q : PROP) :
417
   P - Q - <pers> (P  P)  (P  Q  Q).
418
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
419

420
Lemma test_iSplit_persistently P Q :  P - <pers> (P  P).
421
Proof. iIntros "#?". by iSplit. Qed.
Ralf Jung's avatar
Ralf Jung committed
422

423
Lemma test_iSpecialize_persistent P Q :  P - (<pers> P  Q) - Q.
424
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425

426
Lemma test_iDestruct_persistent P (Φ : nat  PROP) `{! x, Persistent (Φ x)}:
427
   (P -  x, Φ x) -
428
429
430
431
432
  P -  x, Φ x  P.
Proof.
  iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.

433
Lemma test_iLöb `{!BiLöb PROP} P :   n, ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
436
437
Proof.
  iLöb as "IH". iDestruct "IH" as (n) "IH".
  by iExists (S n).
Qed.
438

439
Lemma test_iInduction_wf (x : nat) P Q :
440
   P - Q -  (x + 0 = x)%nat .
441
442
443
Proof.
  iIntros "#HP HQ".
  iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
444
  rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
445
446
Qed.

447
448
449
450
451
452
453
454
455
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat  nat  PROP) y :
  ([ map] x  i  m, Φ y x) - ([ map] x  i  m, emp  Φ y x).
Proof.
  iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
  - by rewrite !big_sepM_empty.
  - rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
    by iApply "IH".
Qed.

456
Lemma test_iIntros_start_proof :
Gregory Malecha's avatar
Gregory Malecha committed
457
  @{PROP} True.
458
459
460
461
462
Proof.
  (* Make sure iIntros actually makes progress and enters the proofmode. *)
  progress iIntros. done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
463
Lemma test_True_intros : (True : PROP) - True.
464
465
466
Proof.
  iIntros "?". done.
Qed.
467
468
469
470
471
472
473
474
475
476

Lemma test_iPoseProof_let P Q :
  (let R := True%I in R  P  Q) 
  P  Q.
Proof.
  iIntros (help) "HP".
  iPoseProof (help with "[$HP]") as "?". done.
Qed.

Lemma test_iIntros_let P :
Robbert Krebbers's avatar
Robbert Krebbers committed
477
478
   Q, let R := emp%I in P - R - Q - P  Q.
Proof. iIntros (Q R) "$ _ $". Qed.
479

480
481
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
482
Proof.
483
  iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
484
485
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
486
Lemma test_iIntros_modalities `(!Absorbing P) :
Gregory Malecha's avatar
Gregory Malecha committed
487
   <pers> (   x : nat,  x = 0    x = 0  - False - P - P).
488
489
490
491
492
Proof.
  iIntros (x ??).
  iIntros "* **". (* Test that fast intros do not work under modalities *)
  iIntros ([]).
Qed.
493

494
495
496
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
  x1 = x2  ( x2 = x3    x3  x4   P) -  x1 = x4   P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497

498
499
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
  <affine>  (Q  P) - <affine>  Q - <affine>  P.
500
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
501

502
Lemma test_iAlways P Q R :
503
   P - <pers> Q  R - <pers> <affine> <affine> P   Q.
Ralf Jung's avatar
Ralf Jung committed
504
Proof. iIntros "#HP #HQ HR". iSplitL. iModIntro. done. iModIntro. done. Qed.
505

Robbert Krebbers's avatar
Robbert Krebbers committed
506
507
508
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
509
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
511
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
512
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
515
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
516
517
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_forall_nondep_4 (φ : Prop) :
518
  φ  ( _ : φ, False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
520
521
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.

Lemma test_pure_impl_1 (φ : Prop) :
522
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
524
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
525
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
527
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
528
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
530
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_pure_impl_4 (φ : Prop) :
531
  φ  (⌜φ⌝  False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
534
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.

Lemma test_forall_nondep_impl2 (φ : Prop) P :
535
  φ  P - ( _ : φ, P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
536
537
538
539
540
541
542
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

Lemma test_pure_impl2 (φ : Prop) P :
543
  φ  P - (⌜φ⌝  P - False : PROP) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
544
545
546
547
548
549
Proof.
  iIntros (Hφ) "HP Hφ".
  Fail iSpecialize ("Hφ" with "HP").
  iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.

550
551
552
553
554
Lemma demo_laterN_forall {A} (Φ Ψ: A  PROP) n: ( x, ^n Φ x) - ^n ( x, Φ x).
Proof.
  iIntros "H" (w). iApply ("H" $! w).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
555
Lemma test_iNext_laterN_later P n :  ^n P - ^n  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
556
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557
Lemma test_iNext_later_laterN P n : ^n  P -  ^n P.
Robbert Krebbers's avatar
Robbert Krebbers committed
558
Proof. iIntros "H". iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
Lemma test_iNext_plus_1 P n1 n2 :  ^n1 ^n2 P - ^n1 ^n2  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
562
Lemma test_iNext_plus_2 P n m : ^n ^m P - ^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
563
Check "test_iNext_plus_3".
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
Lemma test_iNext_plus_3 P Q n m k :
  ^m ^(2 + S n + k) P - ^m  ^(2 + S n) Q - ^k  ^(S (S n + S m)) (P  Q).
566
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
567

568
569
570
571
572
573
574
575
Lemma test_iNext_unfold P Q n m (R := (^n P)%I) :
  R  ^m True.
Proof.
  iIntros "HR". iNext.
  match goal with |-  context [ R ] => idtac | |- _ => fail end.
  done.
Qed.

576
577
578
Lemma test_iNext_fail P Q a b c d e f g h i j:
  ^(a + b) ^(c + d + e) P - ^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
579
580

Lemma test_specialize_affine_pure (φ : Prop) P :
581
  φ  (<affine> ⌜φ⌝ - P)  P.
582
583
584
585
586
Proof.
  iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.

Lemma test_assert_affine_pure (φ : Prop) P :
587
588
  φ  P  P  <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
589
590
Lemma test_assert_pure (φ : Prop) P :
  φ  P  P  ⌜φ⌝.
591
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
592

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
  φ 
  P - P2 -
  (<affine>  φ  - P2 - Q) -
  (P - Q - R1) -
  (R1 - True - R2) -
  R2.
Proof.
  iIntros (?) "HP HP2 HQ H1 H2".
  by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.

Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
   P1 -
   (P1 - P2) -
  (P2 - P2 - P3) -
  (P3 - P4) -
  (P4 - P5) -
  P5.
Proof.
  iIntros "#H #H1 H2 H3 H4".
  by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.

Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
  φ 
   P -  (P - Q) - (Q - Q - R2) - R2.
Proof.
  iIntros (?) "#HP #HQ HR".
  iSpecialize ("HR" with "(HQ HP) (HQ HP)").
  Show.
  done.
Qed.

Lemma test_specialize_intuitionistic P Q :
   P -  (P - Q) -  Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.

632
Lemma test_iEval x y :  (y + x)%nat = 1  -  S (x + y) = 2%nat  : PROP.
633
634
635
636
637
638
Proof.
  iIntros (H).
  iEval (rewrite (Nat.add_comm x y) // H).
  done.
Qed.

639
640
641
642
643
644
645
Lemma test_iEval_precedence : True  True : PROP.
Proof.
  iIntros.
  (* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
  iEval (rewrite /=); iPureIntro; exact I.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
646
647
648
649
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.

650
651
652
653
654
Lemma test_iSimpl_in_2 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.

655
656
657
658
659
Lemma test_iSimpl_in3 x y z :
   (3 + x)%nat = y  -  (1 + y)%nat = z  -
   S (S (S x)) = y  : PROP.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.

Dan Frumin's avatar
Dan Frumin committed
660
661
662
663
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y :  (3 + x)%nat = y  -  S (S (S x)) = y  : PROP.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.

Gregory Malecha's avatar
Gregory Malecha committed
664
Lemma test_iIntros_pure_neg : @{PROP}  ¬False .
665
Proof. by iIntros (?). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
666

667
Lemma test_iPureIntro_absorbing (φ : Prop) :
Gregory Malecha's avatar
Gregory Malecha committed
668
  φ  @{PROP} <absorb> ⌜φ⌝.
669
670
Proof. intros ?. iPureIntro. done. Qed.

Ralf Jung's avatar
Ralf Jung committed
671
Check "test_iFrame_later_1".
672
Lemma test_iFrame_later_1 P Q : P   Q -  (P   Q).
673
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
674

Ralf Jung's avatar
Ralf Jung committed
675
Check "test_iFrame_later_2".
676
Lemma test_iFrame_later_2 P Q :  P   Q -  ( P   Q).
677
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
678
679
680
681
682

Lemma test_with_ident P Q R : P - Q - (P - Q - R) - R.
Proof.
  iIntros "? HQ H".
  iMatchHyp (fun H _ =>
683
    iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
684
Qed.
685
686

Lemma iFrame_with_evar_r P Q :
687
   R, (P - Q - P  R)  R = Q.
688
Proof.
689
  eexists. split. iIntros "HP HQ". iFrame. iApply "HQ". done.
690
691
Qed.
Lemma iFrame_with_evar_l P Q :
692
   R, (P - Q - R  P)  R = Q.
693
Proof.
694
  eexists. split. iIntros "HP HQ". Fail iFrame "HQ".
695
  iSplitR "HP"; iAssumption. done.
696
Qed.
697
698
699
700
701
702
Lemma iFrame_with_evar_persistent P Q :
   R, (P -  Q - P  R  Q)  R = emp%I.
Proof.
  eexists. split. iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro. done.
Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
703
704
705
706
707
708
Lemma test_iAccu P Q R S :
   PP, (P - Q - R - S - PP)  PP = (Q  R  S)%I.
Proof.
  eexists. split. iIntros "#? ? ? ?". iAccu. done.
Qed.

Ralf Jung's avatar
Ralf Jung committed
709
Lemma test_iAssumption_evar P :  R, (R  P)  R = P.
710
711
712
713
714
715
716
Proof.
  eexists. split.
  - iIntros "H". iAssumption.
  (* Now verify that the evar was chosen as desired (i.e., it should not pick False). *)
  - reflexivity.
Qed.

Ralf Jung's avatar
Ralf Jung committed
717
718
719
Lemma test_iAssumption_False_no_loop :  R, R   P, P.
Proof. eexists. iIntros "?" (P). done. Qed.

720
721
722
723
Lemma test_apply_affine_impl `{!BiPlainly PROP} (P : PROP) :
  P - ( Q : PROP,  (Q - <pers> Q)   (P - Q)  Q).
Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed.

Ralf Jung's avatar
Ralf Jung committed
724
725
726
727
Lemma test_apply_affine_wand `{!BiPlainly PROP} (P : PROP) :
  P - ( Q : PROP, <affine>  (Q - <pers> Q) - <affine>  (P - Q) - Q).
Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed.

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
Lemma test_and_sep (P Q R : PROP) : P  (Q   R)  (P  Q)   R.
Proof.
  iIntros "H". repeat iSplit.
  - iDestruct "H" as "[$ _]".
  - iDestruct "H" as "[_ [$ _]]".
  - iDestruct "H" as "[_ [_ #$]]".
Qed.

Lemma test_and_sep_2 (P Q R : PROP) `{!Persistent R, !Affine R} :
  P  (Q  R)  (P  Q)  R.
Proof.
  iIntros "H". repeat iSplit.
  - iDestruct "H" as "[$ _]".
  - iDestruct "H" as "[_ [$ _]]".
  - iDestruct "H" as "[_ [_ #$]]".
Qed.
744

Ralf Jung's avatar
Ralf Jung committed
745
Check "test_and_sep_affine_bi".
746
Lemma test_and_sep_affine_bi `{!BiAffine PROP} P Q :  P  Q   P  Q.
747
Proof.
748
  iIntros "[??]". iSplit; last done. Show. done.
749
Qed.
750

Ralf Jung's avatar
Ralf Jung committed
751
Check "test_big_sepL_simpl".
752
Lemma test_big_sepL_simpl x (l : list nat) P :
Robbert Krebbers's avatar
Robbert Krebbers committed
753
   P -
754
755
756
  ([ list] ky  l, <affine>  y = y ) -
  ([ list] y  x :: l, <affine>  y = y ) -
  P.
757
Proof. iIntros "HP ??". Show. simpl. Show. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
758

Ralf Jung's avatar
Ralf Jung committed
759
Check "test_big_sepL2_simpl".
Robbert Krebbers's avatar
Robbert Krebbers committed
760
761
762
763
764
Lemma test_big_sepL2_simpl x1 x2 (l1 l2 : list nat) P :
  P -
  ([ list] ky1;y2  []; l2, <affine>  y1 = y2 ) -
  ([ list] y1;y2  x1 :: l1; (x2 :: l2) ++ l2, <affine>  y1 = y2 ) -
  P  ([ list] y1;y2  x1 :: l1; x2 :: l2, True).
765
Proof. iIntros "HP ??". Show. simpl. Show. by iLeft. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
766

Ralf Jung's avatar
Ralf Jung committed
767
Check "test_big_sepL2_iDestruct".
Robbert Krebbers's avatar
Robbert Krebbers committed
768
769
770
771
772
773
774
775
776
Lemma test_big_sepL2_iDestruct (Φ : nat  nat  PROP) x1 x2 (l1 l2 : list nat) :
  ([ list] y1;y2  x1 :: l1; x2 :: l2, Φ y1 y2) -
  <absorb> Φ x1 x2.
Proof. iIntros "[??]". Show. iFrame. Qed.

Lemma test_big_sepL2_iFrame (Φ : nat  nat  PROP) (l1 l2 : list nat) P :
  Φ 0 10 - ([ list] y1;y2  l1;l2, Φ y1 y2) -
  ([ list] y1;y2  (0 :: l1);(10 :: l2), Φ y1 y2).
Proof. iIntros "$ ?". iFrame. Qed.
777
778
779
780

Lemma test_lemma_1 (b : bool) :
  emp @{PROP} ?b True.
Proof. destruct b; simpl; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
781
Check "test_reducing_after_iDestruct".
782
783
784
785
786
787
788
789
Lemma test_reducing_after_iDestruct : emp @{PROP} True.
Proof.
  iIntros "H". iDestruct (test_lemma_1 true with "H") as "H". Show. done.
Qed.

Lemma test_lemma_2 (b : bool) :
  ?b emp @{PROP} emp.
Proof. destruct b; simpl; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
790
Check "test_reducing_after_iApply".
791
792
793
794
795
796
797
798
Lemma test_reducing_after_iApply : emp @{PROP} emp.
Proof.
  iIntros "#H". iApply (test_lemma_2 true). Show. auto.
Qed.

Lemma test_lemma_3 (b : bool) :
  ?b emp @{PROP} b = b.
Proof. destruct b; simpl; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
799
Check "test_reducing_after_iApply_late_evar".
800
801
802
803
804
805
Lemma test_reducing_after_iApply_late_evar : emp @{PROP} true = true.
Proof.
  iIntros "#H". iApply (test_lemma_3). Show. auto.
Qed.

Section wandM.
Ralf Jung's avatar
Ralf Jung committed
806
  Import proofmode.base.
Ralf Jung's avatar
Ralf Jung committed
807
  Check "test_wandM".
Ralf Jung's avatar
Ralf Jung committed
808
809
810
811
812
813
814
  Lemma test_wandM mP Q R :
    (mP -? Q) - (Q - R) - (mP -? R).
  Proof.
    iIntros "HPQ HQR HP". Show.
    iApply "HQR". iApply "HPQ". Show.
    done.
  Qed.
815
816
End wandM.

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
Definition modal_if_def b (P : PROP) :=
  (?b P)%I.
Lemma modal_if_lemma1 b P :
  False - ?b P.
Proof. iIntros "?". by iExFalso. Qed.
Lemma test_iApply_prettification1 (P : PROP) :
  False - modal_if_def true P.
Proof.
  (* Make sure the goal is not prettified before [iApply] unifies. *)
  iIntros "?". rewrite /modal_if_def. iApply modal_if_lemma1. iAssumption.
Qed.
Lemma modal_if_lemma2 P :
  False - ?false P.
Proof. iIntros "?". by iExFalso. Qed.
Lemma test_iApply_prettification2 (P  : PROP) :
  False -  b, ?b P.
Proof.
  (* Make sure the conclusion of the lemma is not prettified too early. *)
  iIntros "?". iExists _. iApply modal_if_lemma2. done.
Qed.
837

838
839
840
841
842
Lemma test_iDestruct_clear P Q R :
  P - (Q  R) - True.
Proof.
  iIntros "HP HQR". iDestruct "HQR" as "{HP} [HQ HR]". done.
Qed.
Ralf Jung's avatar
Ralf Jung committed
843
End tests.
844

845
Section parsing_tests.
846
Context {PROP : bi}.
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878