own.v 7.95 KB
Newer Older
1
From iris.algebra Require Import iprod gmap.
2
From iris.base_logic Require Import big_op.
Ralf Jung's avatar
Ralf Jung committed
3
From iris.base_logic Require Export iprop.
4
From iris.proofmode Require Import classes.
5
Set Default Proof Using "Type".
6
7
Import uPred.

8
9
(** The class [inG Σ A] expresses that the CMRA [A] is in the list of functors
[Σ]. This class is similar to the [subG] class, but written down in terms of
10
individual CMRAs instead of (lists of) CMRA *functors*. This additional class is
11
12
13
14
15
16
17
18
19
needed because Coq is otherwise unable to solve type class constraints due to
higher-order unification problems. *)
Class inG (Σ : gFunctors) (A : cmraT) :=
  InG { inG_id : gid Σ; inG_prf : A = Σ inG_id (iPreProp Σ) }.
Arguments inG_id {_ _} _.

Lemma subG_inG Σ (F : gFunctor) : subG F Σ  inG Σ (F (iPreProp Σ)).
Proof. move=> /(_ 0%fin) /= [j ->]. by exists j. Qed.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
(** This tactic solves the usual obligations "subG ? Σ → {in,?}G ? Σ" *)
Ltac solve_inG :=
  (* Get all assumptions *)
  intros;
  (* Unfold the top-level xΣ *)
  lazymatch goal with
  | H : subG (?xΣ _) _ |- _ => try unfold xΣ in H
  | H : subG ?xΣ _ |- _ => try unfold xΣ in H
  end;
  (* Take apart subG for non-"atomic" lists *)
  repeat match goal with
         | H : subG (gFunctors.app _ _) _ |- _ => apply subG_inv in H; destruct H
         end;
  (* Try to turn singleton subG into inG; but also keep the subG for typeclass
     resolution -- to keep them, we put them onto the goal. *)
  repeat match goal with
         | H : subG _ _ |- _ => move:(H); (apply subG_inG in H || clear H)
         end;
  (* Again get all assumptions *)
  intros;
  (* We support two kinds of goals: Things convertible to inG;
     and records with inG and typeclass fields. Try to solve the
     first case. *)
  try done;
  (* That didn't work, now we're in for the second case. *)
  split; (assumption || by apply _).

47
48
49
50
51
(** * Definition of the connective [own] *)
Definition iRes_singleton `{i : inG Σ A} (γ : gname) (a : A) : iResUR Σ :=
  iprod_singleton (inG_id i) {[ γ := cmra_transport inG_prf a ]}.
Instance: Params (@iRes_singleton) 4.

52
Definition own_def `{inG Σ A} (γ : gname) (a : A) : iProp Σ :=
53
  uPred_ownM (iRes_singleton γ a).
54
Definition own_aux : { x | x = @own_def }. by eexists. Qed.
55
Definition own {Σ A i} := proj1_sig own_aux Σ A i.
56
Definition own_eq : @own = @own_def := proj2_sig own_aux.
57
Instance: Params (@own) 4.
58
Typeclasses Opaque own.
59

60
(** * Properties about ghost ownership *)
61
Section global.
62
Context `{inG Σ A}.
63
64
Implicit Types a : A.

65
66
67
68
69
70
71
72
73
74
75
(** ** Properties of [iRes_singleton] *)
Global Instance iRes_singleton_ne γ n :
  Proper (dist n ==> dist n) (@iRes_singleton Σ A _ γ).
Proof. by intros a a' Ha; apply iprod_singleton_ne; rewrite Ha. Qed.
Lemma iRes_singleton_op γ a1 a2 :
  iRes_singleton γ (a1  a2)  iRes_singleton γ a1  iRes_singleton γ a2.
Proof.
  by rewrite /iRes_singleton iprod_op_singleton op_singleton cmra_transport_op.
Qed.

(** ** Properties of [own] *)
76
Global Instance own_ne γ n : Proper (dist n ==> dist n) (@own Σ A _ γ).
77
Proof. rewrite !own_eq. solve_proper. Qed.
78
Global Instance own_proper γ :
79
  Proper (() ==> ()) (@own Σ A _ γ) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
80

81
Lemma own_op γ a1 a2 : own γ (a1  a2)  own γ a1  own γ a2.
82
Proof. by rewrite !own_eq /own_def -ownM_op iRes_singleton_op. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
85
Lemma own_mono γ a1 a2 : a2  a1  own γ a1  own γ a2.
Proof. move=> [c ->]. rewrite own_op. eauto with I. Qed.

86
87
Global Instance own_cmra_homomorphism : CMRAHomomorphism (own γ).
Proof. split. apply _. apply own_op. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
Global Instance own_mono' γ : Proper (flip () ==> ()) (@own Σ A _ γ).
Proof. intros a1 a2. apply own_mono. Qed.
90

91
Lemma own_valid γ a : own γ a   a.
92
Proof.
93
  rewrite !own_eq /own_def ownM_valid /iRes_singleton.
94
  rewrite iprod_validI (forall_elim (inG_id _)) iprod_lookup_singleton.
95
  rewrite gmap_validI (forall_elim γ) lookup_singleton option_validI.
96
  (* implicit arguments differ a bit *)
97
  by trans ( cmra_transport inG_prf a : iProp Σ)%I; last destruct inG_prf.
98
Qed.
99
Lemma own_valid_2 γ a1 a2 : own γ a1 - own γ a2 -  (a1  a2).
100
Proof. apply wand_intro_r. by rewrite -own_op own_valid. Qed.
101
Lemma own_valid_3 γ a1 a2 a3 : own γ a1 - own γ a2 - own γ a3 -  (a1  a2  a3).
102
Proof. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed.
103
Lemma own_valid_r γ a : own γ a  own γ a   a.
104
Proof. apply (uPred.always_entails_r _ _). apply own_valid. Qed.
105
Lemma own_valid_l γ a : own γ a   a  own γ a.
106
Proof. by rewrite comm -own_valid_r. Qed.
107

108
Global Instance own_timeless γ a : Timeless a  TimelessP (own γ a).
109
Proof. rewrite !own_eq /own_def; apply _. Qed.
110
Global Instance own_core_persistent γ a : Persistent a  PersistentP (own γ a).
111
Proof. rewrite !own_eq /own_def; apply _. Qed.
112

113
(** ** Allocation *)
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
   assertion. However, the map_updateP_alloc does not suffice to show this. *)
116
Lemma own_alloc_strong a (G : gset gname) :
117
   a  (|==>  γ, ⌜γ  G  own γ a)%I.
118
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
  intros Ha.
Ralf Jung's avatar
Ralf Jung committed
120
  rewrite -(bupd_mono ( m,  γ, γ  G  m = iRes_singleton γ a  uPred_ownM m)%I).
121
  - rewrite /uPred_valid ownM_empty.
122
    eapply bupd_ownM_updateP, (iprod_singleton_updateP_empty (inG_id _));
123
      first (eapply alloc_updateP_strong', cmra_transport_valid, Ha);
124
      naive_solver.
125
  - apply exist_elim=>m; apply pure_elim_l=>-[γ [Hfresh ->]].
126
    by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id.
127
Qed.
128
Lemma own_alloc a :  a  (|==>  γ, own γ a)%I.
129
Proof.
130
  intros Ha. rewrite /uPred_valid (own_alloc_strong a ) //; [].
131
  apply bupd_mono, exist_mono=>?. eauto with I.
132
Qed.
133

134
(** ** Frame preserving updates *)
Ralf Jung's avatar
Ralf Jung committed
135
Lemma own_updateP P γ a : a ~~>: P  own γ a ==  a', P a'  own γ a'.
136
Proof.
137
  intros Ha. rewrite !own_eq.
Ralf Jung's avatar
Ralf Jung committed
138
  rewrite -(bupd_mono ( m,  a', m = iRes_singleton γ a'  P a'  uPred_ownM m)%I).
139
  - eapply bupd_ownM_updateP, iprod_singleton_updateP;
140
      first by (eapply singleton_updateP', cmra_transport_updateP', Ha).
Robbert Krebbers's avatar
Robbert Krebbers committed
141
    naive_solver.
142
143
  - apply exist_elim=>m; apply pure_elim_l=>-[a' [-> HP]].
    rewrite -(exist_intro a'). by apply and_intro; [apply pure_intro|].
144
145
Qed.

146
Lemma own_update γ a a' : a ~~> a'  own γ a == own γ a'.
147
Proof.
148
  intros; rewrite (own_updateP (a' =)); last by apply cmra_update_updateP.
149
  by apply bupd_mono, exist_elim=> a''; apply pure_elim_l=> ->.
150
Qed.
151
Lemma own_update_2 γ a1 a2 a' :
152
  a1  a2 ~~> a'  own γ a1 - own γ a2 == own γ a'.
153
Proof. intros. apply wand_intro_r. rewrite -own_op. by apply own_update. Qed.
154
Lemma own_update_3 γ a1 a2 a3 a' :
155
  a1  a2  a3 ~~> a'  own γ a1 - own γ a2 - own γ a3 == own γ a'.
156
Proof. intros. do 2 apply wand_intro_r. rewrite -!own_op. by apply own_update. Qed.
157
End global.
158

159
Arguments own_valid {_ _} [_] _ _.
160
161
Arguments own_valid_2 {_ _} [_] _ _ _.
Arguments own_valid_3 {_ _} [_] _ _ _ _.
162
163
164
165
Arguments own_valid_l {_ _} [_] _ _.
Arguments own_valid_r {_ _} [_] _ _.
Arguments own_updateP {_ _} [_] _ _ _ _.
Arguments own_update {_ _} [_] _ _ _ _.
166
167
Arguments own_update_2 {_ _} [_] _ _ _ _ _.
Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
168

169
Lemma own_empty A `{inG Σ (A:ucmraT)} γ : (|==> own γ )%I.
170
Proof.
171
  rewrite /uPred_valid ownM_empty !own_eq /own_def.
172
  apply bupd_ownM_update, iprod_singleton_update_empty.
173
  apply (alloc_unit_singleton_update (cmra_transport inG_prf )); last done.
174
175
  - apply cmra_transport_valid, ucmra_unit_valid.
  - intros x; destruct inG_prf. by rewrite left_id.
176
Qed.
177
178
179
180
181
182
183
184
185
186
187
188
189

(** Proofmode class instances *)
Section proofmode_classes.
  Context `{inG Σ A}.
  Implicit Types a b : A.

  Global Instance into_and_own p γ a b1 b2 :
    IntoOp a b1 b2  IntoAnd p (own γ a) (own γ b1) (own γ b2).
  Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) own_op. Qed.
  Global Instance from_sep_own γ a b1 b2 :
    FromOp a b1 b2  FromSep (own γ a) (own γ b1) (own γ b2).
  Proof. intros. by rewrite /FromSep -own_op from_op. Qed.
End proofmode_classes.