Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
09c48057
Commit
09c48057
authored
Feb 06, 2020
by
Dmitry Khalanskiy
Committed by
Ralf Jung
Mar 17, 2021
Browse files
Add lemmas about local updates of lists
parent
d55f8339
Changes
1
Hide whitespace changes
Inline
Side-by-side
iris/algebra/list.v
View file @
09c48057
...
...
@@ -328,6 +328,24 @@ Section properties.
length
l2
≤
length
l1
→
(
l1
++
l3
)
⋅
l2
=
(
l1
⋅
l2
)
++
l3
.
Proof
.
intros
?.
by
rewrite
list_op_app
take_ge
//
drop_ge
//
right_id_L
.
Qed
.
Lemma
list_drop_op
l1
l2
i
:
drop
i
l1
⋅
drop
i
l2
=
drop
i
(
l1
⋅
l2
).
Proof
.
apply
list_eq
.
intros
j
.
rewrite
list_lookup_op
!
lookup_drop
-
list_lookup_op
.
done
.
Qed
.
Lemma
list_take_op
l1
l2
i
:
take
i
l1
⋅
take
i
l2
=
take
i
(
l1
⋅
l2
).
Proof
.
apply
list_eq
.
intros
j
.
rewrite
list_lookup_op
.
destruct
(
decide
(
j
<
i
)%
nat
).
-
by
rewrite
!
lookup_take
//
-
list_lookup_op
.
-
by
rewrite
!
lookup_take_ge
//
;
lia
.
Qed
.
Lemma
list_lookup_validN_Some
n
l
i
x
:
✓
{
n
}
l
→
l
!!
i
≡
{
n
}
≡
Some
x
→
✓
{
n
}
x
.
Proof
.
move
=>
/
list_lookup_validN
/(
_
i
)=>
Hl
Hi
;
move
:
Hl
.
by
rewrite
Hi
.
Qed
.
Lemma
list_lookup_valid_Some
l
i
x
:
✓
l
→
l
!!
i
≡
Some
x
→
✓
x
.
...
...
@@ -512,6 +530,152 @@ Section properties.
by
apply
cmra_valid_validN
.
Qed
.
Lemma
list_lookup_local_update
l
k
l'
k'
:
(
∀
i
,
(
l
!!
i
,
k
!!
i
)
~l
~>
(
l'
!!
i
,
k'
!!
i
))
→
(
l
,
k
)
~l
~>
(
l'
,
k'
).
Proof
.
intros
Hup
.
apply
local_update_unital
=>
n
z
Hlv
Hl
.
assert
(
∀
i
,
✓
{
n
}
(
l'
!!
i
)
/\
l'
!!
i
≡
{
n
}
≡
(
k'
⋅
z
)
!!
i
)
as
Hup'
.
{
intros
i
.
destruct
(
Hup
i
n
(
Some
(
z
!!
i
)))
;
simpl
in
*.
-
by
apply
list_lookup_validN
.
-
rewrite
-
list_lookup_op
.
by
apply
list_dist_lookup
.
-
by
rewrite
list_lookup_op
.
}
split
;
[
apply
list_lookup_validN
|
apply
list_dist_lookup
].
all
:
intros
i
;
by
destruct
(
Hup'
i
).
Qed
.
Lemma
list_alter_local_update
i
f
g
l
k
:
(
l
!!
i
,
k
!!
i
)
~l
~>
(
f
<$>
(
l
!!
i
),
g
<$>
(
k
!!
i
))
→
(
l
,
k
)
~l
~>
(
alter
f
i
l
,
alter
g
i
k
).
Proof
.
intros
Hup
.
apply
list_lookup_local_update
.
intros
i'
.
destruct
(
decide
(
i
=
i'
))
as
[->|].
-
rewrite
!
list_lookup_alter
//.
-
rewrite
!
list_lookup_alter_ne
//.
Qed
.
(* The "⋅ (replicate ... ++ ...)" part is needed because `m` could be
shorter than `l`. *)
Lemma
app_l_local_update
l
k
k'
m
m'
:
(
k
,
drop
(
length
l
)
m
)
~l
~>
(
k'
,
m'
)
→
(
l
++
k
,
m
)
~l
~>
(
l
++
k'
,
take
(
length
l
)
m
⋅
(
replicate
(
length
l
)
ε
++
m'
)).
Proof
.
move
/(
local_update_unital
_
)
=>
HUp
.
apply
local_update_unital
=>
n
mm
/(
app_validN
_
)
[
Hlv
Hkv
]
Heq
.
move
:
(
HUp
n
(
drop
(
length
l
)
mm
)
Hkv
).
intros
[
Hk'v
Hk'eq
]
;
first
by
rewrite
list_drop_op
-
Heq
drop_app_le
//
drop_ge
//.
split
;
first
by
apply
app_validN
.
rewrite
Hk'eq
.
apply
list_dist_lookup
.
intros
i
.
rewrite
!
list_lookup_op
.
destruct
(
decide
(
i
<
length
l
)%
nat
)
as
[
HLt
|
HGe
].
-
rewrite
!
lookup_app_l
//
;
last
by
rewrite
replicate_length
.
rewrite
lookup_take
;
last
done
.
rewrite
lookup_replicate_2
;
last
done
.
rewrite
comm
assoc
-
list_lookup_op
.
rewrite
(
mixin_cmra_comm
_
list_cmra_mixin
)
-
Heq
.
rewrite
lookup_app_l
;
last
done
.
apply
lookup_lt_is_Some
in
HLt
as
[?
HEl
].
by
rewrite
HEl
-
Some_op
ucmra_unit_right_id
.
-
assert
(
length
l
≤
i
)%
nat
as
HLe
by
lia
.
rewrite
!
lookup_app_r
//
;
last
by
rewrite
replicate_length
.
rewrite
replicate_length
.
rewrite
lookup_take_ge
;
last
done
.
replace
(
mm
!!
_
)
with
(
drop
(
length
l
)
mm
!!
(
i
-
length
l
)%
nat
)
;
last
by
rewrite
lookup_drop
;
congr
(
mm
!!
_
)
;
lia
.
rewrite
-
assoc
-
list_lookup_op
.
symmetry
.
clear
.
move
:
n
.
apply
equiv_dist
.
apply
:
ucmra_unit_left_id
.
Qed
.
Lemma
app_l_local_update'
l
k
k'
m
:
(
k
,
ε
)
~l
~>
(
k'
,
m
)
→
(
l
++
k
,
ε
)
~l
~>
(
l
++
k'
,
replicate
(
length
l
)
ε
++
m
).
Proof
.
remember
(
app_l_local_update
l
k
k'
ε
m
)
as
HH
.
clear
HeqHH
.
move
:
HH
.
by
rewrite
take_nil
drop_nil
ucmra_unit_left_id
.
Qed
.
Lemma
app_local_update
l
m
:
✓
m
→
(
l
,
ε
)
~l
~>
(
l
++
m
,
replicate
(
length
l
)
ε
++
m
).
Proof
.
move
:
(
app_l_local_update'
l
[]
m
m
).
rewrite
app_nil_r
.
move
=>
H
Hvm
.
apply
H
.
apply
local_update_unital
=>
n
z
_
.
rewrite
ucmra_unit_left_id
.
move
=><-.
rewrite
ucmra_unit_right_id
.
split
;
last
done
.
by
apply
cmra_valid_validN
.
Qed
.
(* The "replicate ..." part is needed because `m'` could be
shorter than `l`. *)
Lemma
app_r_local_update
l
l'
k
m
m'
:
length
l
=
length
l'
→
(
l
,
take
(
length
l
)
m
)
~l
~>
(
l'
,
m'
)
→
(
l
++
k
,
m
)
~l
~>
(
l'
++
k
,
replicate
(
length
l
)
ε
⋅
m'
++
drop
(
length
l
)
m
).
Proof
.
move
=>
HLen
/(
local_update_unital
_
)
HUp
.
apply
local_update_unital
=>
n
mm
/(
app_validN
_
)
[
Hlv
Hkv
]
Heq
.
move
:
(
HUp
n
(
take
(
length
l
)
mm
)
Hlv
).
intros
[
Hl'v
Hl'eq
]
;
first
by
rewrite
list_take_op
-
Heq
take_app_le
//
take_ge
//.
split
;
first
by
apply
app_validN
.
assert
(
k
≡
{
n
}
≡
(
drop
(
length
l
)
(
m
⋅
mm
)))
as
->
by
rewrite
-
Heq
drop_app_le
//
drop_ge
//.
move
:
HLen
.
rewrite
Hl'eq
.
clear
.
move
=>
HLen
.
assert
(
length
m'
≤
length
l
)%
nat
as
HLen'
.
by
rewrite
list_length_op
in
HLen
;
lia
.
rewrite
list_op_app
list_length_op
replicate_length
max_l
;
last
lia
.
rewrite
list_drop_op
-
assoc
.
rewrite
HLen
.
move
:
HLen'
.
remember
(
length
l
)
as
o
.
clear
.
rewrite
list_length_op
.
remember
(
length
_
`
max
`
length
_
)%
nat
as
o'
.
assert
(
m'
⋅
take
o'
mm
≡
{
n
}
≡
replicate
o'
ε
⋅
(
m'
⋅
take
o'
mm
))
as
<-
;
last
done
.
subst
.
remember
(
m'
⋅
take
_
_
)
as
m''
.
remember
(
length
m'
`
max
`
length
(
take
o
mm
))%
nat
as
o''
.
assert
(
o''
≤
length
m''
)%
nat
as
HLen
.
by
subst
;
rewrite
list_length_op
!
take_length
;
lia
.
move
:
HLen
.
clear
.
intros
HLen
.
move
:
n
.
apply
equiv_dist
,
list_equiv_lookup
.
intros
i
.
rewrite
list_lookup_op
.
remember
length
as
L
.
destruct
(
decide
(
i
<
L
m''
))%
nat
as
[
E
|
E
].
-
subst
.
apply
lookup_lt_is_Some
in
E
as
[?
HEl
].
rewrite
HEl
.
destruct
(
replicate
_
_
!!
_
)
eqn
:
Z
;
last
done
.
apply
lookup_replicate
in
Z
as
[->
_
].
by
rewrite
-
Some_op
ucmra_unit_left_id
.
-
rewrite
lookup_ge_None_2
.
rewrite
lookup_ge_None_2
.
done
.
by
rewrite
replicate_length
;
lia
.
rewrite
-
HeqL
.
lia
.
Qed
.
Lemma
app_r_local_update'
l
l'
k
k'
:
length
l
=
length
l'
→
(
l
,
ε
)
~l
~>
(
l'
,
k'
)
→
(
l
++
k
,
ε
)
~l
~>
(
l'
++
k
,
k'
).
Proof
.
move
=>
HLen
/(
local_update_unital
_
)
HUp
.
apply
local_update_unital
=>
n
mz
/(
app_validN
_
)
[
Hlv
Hkv
].
move
:
(
HUp
n
l
).
rewrite
!
ucmra_unit_left_id
.
intros
[
Hk'v
Hk'eq
]
<-
;
[
done
|
done
|].
split
;
first
by
apply
app_validN
.
move
:
HLen
.
rewrite
Hk'eq
.
clear
.
move
=>
HLen
.
assert
(
length
k'
≤
length
l
)%
nat
as
Hk'Len
by
(
rewrite
HLen
list_length_op
;
lia
).
rewrite
(
mixin_cmra_comm
_
list_cmra_mixin
k'
(
l
++
k
)).
rewrite
list_op_app_le
;
last
done
.
by
rewrite
(
mixin_cmra_comm
_
list_cmra_mixin
l
k'
).
Qed
.
End
properties
.
(** Functor *)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment