Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
15ce289f
Commit
15ce289f
authored
May 24, 2020
by
Robbert Krebbers
Browse files
Rename `derived_laws_bi` → `derived_laws` and `derived_laws_sbi` → `derived_laws_later`.
parent
76bec8b7
Changes
11
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
15ce289f
...
...
@@ -44,8 +44,8 @@ theories/si_logic/bi.v
theories/bi/notation.v
theories/bi/interface.v
theories/bi/derived_connectives.v
theories/bi/derived_laws
_bi
.v
theories/bi/derived_laws_
sbi
.v
theories/bi/derived_laws.v
theories/bi/derived_laws_
later
.v
theories/bi/plainly.v
theories/bi/internal_eq.v
theories/bi/big_op.v
...
...
theories/bi/bi.v
View file @
15ce289f
From
iris
.
bi
Require
Export
derived_laws
_bi
derived_laws_
sbi
big_op
.
From
iris
.
bi
Require
Export
derived_laws
derived_laws_
later
big_op
.
From
iris
.
bi
Require
Export
updates
internal_eq
plainly
embedding
.
Set
Default
Proof
Using
"Type"
.
Module
Import
bi
.
Export
bi
.
interface
.
bi
.
Export
bi
.
derived_laws
_bi
.
bi
.
Export
bi
.
derived_laws_
sbi
.
bi
.
Export
bi
.
derived_laws
.
bi
.
Export
bi
.
derived_laws_
later
.
bi
.
End
bi
.
theories/bi/big_op.v
View file @
15ce289f
From
stdpp
Require
Import
countable
fin_sets
functions
.
From
iris
.
bi
Require
Import
derived_laws_
sbi
.
From
iris
.
bi
Require
Import
derived_laws_
later
.
From
iris
.
algebra
Require
Export
big_op
.
Set
Default
Proof
Using
"Type"
.
Import
interface
.
bi
derived_laws
_bi
.
bi
derived_laws_
sbi
.
bi
.
Import
interface
.
bi
derived_laws
.
bi
derived_laws_
later
.
bi
.
(** Notations for unary variants *)
Notation
"'[∗' 'list]' k ↦ x ∈ l , P"
:
=
...
...
theories/bi/derived_connectives.v
View file @
15ce289f
...
...
@@ -119,7 +119,7 @@ Notation "mP -∗? Q" := (bi_wandM mP Q)
(** This class is required for the [iLöb] tactic. For most logics this class
should not be inhabited directly, but the instance [Contractive (▷) → BiLöb PROP]
in [derived_laws_
sbi
] should be used. A direct instance of the class is useful
in [derived_laws_
later
] should be used. A direct instance of the class is useful
when considering a BI logic with a discrete OFE, instead of a OFE that takes
step-indexing of the logic in account.*)
Class
BiL
ö
b
(
PROP
:
bi
)
:
=
...
...
theories/bi/derived_laws
_bi
.v
→
theories/bi/derived_laws.v
View file @
15ce289f
...
...
@@ -10,7 +10,7 @@ From iris.algebra Require Import monoid.
Module
bi
.
Import
interface
.
bi
.
Section
bi_
derived
.
Section
derived
.
Context
{
PROP
:
bi
}.
Implicit
Types
φ
:
Prop
.
Implicit
Types
P
Q
R
:
PROP
.
...
...
@@ -1551,5 +1551,5 @@ Qed.
Global
Instance
limit_preserving_Persistent
{
A
:
ofeT
}
`
{
Cofe
A
}
(
Φ
:
A
→
PROP
)
:
NonExpansive
Φ
→
LimitPreserving
(
λ
x
,
Persistent
(
Φ
x
)).
Proof
.
intros
.
apply
limit_preserving_entails
;
solve_proper
.
Qed
.
End
bi_
derived
.
End
derived
.
End
bi
.
theories/bi/derived_laws_
sbi
.v
→
theories/bi/derived_laws_
later
.v
View file @
15ce289f
From
iris
.
bi
Require
Export
derived_laws
_bi
.
From
iris
.
bi
Require
Export
derived_laws
.
From
iris
.
algebra
Require
Import
monoid
.
Module
bi
.
Import
interface
.
bi
.
Import
derived_laws_bi
.
bi
.
Section
sbi_derived
.
Import
derived_laws
.
bi
.
Section
later_derived
.
Context
{
PROP
:
bi
}.
Implicit
Types
φ
:
Prop
.
Implicit
Types
P
Q
R
:
PROP
.
...
...
@@ -398,5 +399,5 @@ Proof. split; try apply _. apply laterN_intro. Qed.
Global
Instance
bi_except_0_sep_entails_homomorphism
:
MonoidHomomorphism
bi_sep
bi_sep
(
flip
(
⊢
))
(@
bi_except_0
PROP
).
Proof
.
split
;
try
apply
_
.
apply
except_0_intro
.
Qed
.
End
sbi
_derived
.
End
later
_derived
.
End
bi
.
theories/bi/embedding.v
View file @
15ce289f
From
iris
.
bi
Require
Import
interface
derived_laws_
sbi
big_op
.
From
iris
.
bi
Require
Import
interface
derived_laws_
later
big_op
.
From
iris
.
bi
Require
Import
plainly
updates
internal_eq
.
From
iris
.
algebra
Require
Import
monoid
.
...
...
theories/bi/interface.v
View file @
15ce289f
...
...
@@ -121,7 +121,7 @@ Section bi_mixin.
identity function, as the Löb axiom or contractiveness of later is not part of
[BiLaterMixin]. For step-indexed BIs one should separately prove an instance
of the class [BiLöb PROP] or [Contractive (▷)]. (Note that there is an
instance [Contractive (▷) → BiLöb PROP] in [derived_laws_
sbi
].)
instance [Contractive (▷) → BiLöb PROP] in [derived_laws_
later
].)
For non step-indexed BIs one can get a "free" instance of [BiLaterMixin] using
the smart constructor [bi_later_mixin_id] below. *)
...
...
theories/bi/internal_eq.v
View file @
15ce289f
From
iris
.
bi
Require
Import
derived_laws_
sbi
big_op
.
Import
interface
.
bi
derived_laws
_bi
.
bi
derived_laws_
sbi
.
bi
.
From
iris
.
bi
Require
Import
derived_laws_
later
big_op
.
Import
interface
.
bi
derived_laws
.
bi
derived_laws_
later
.
bi
.
(** This file defines a type class for BIs with a notion of internal equality.
Internal equality is not part of the [bi] canonical structure as [internal_eq]
...
...
theories/bi/plainly.v
View file @
15ce289f
From
iris
.
bi
Require
Import
derived_laws_
sbi
big_op
internal_eq
.
From
iris
.
bi
Require
Import
derived_laws_
later
big_op
internal_eq
.
From
iris
.
algebra
Require
Import
monoid
.
Import
interface
.
bi
derived_laws
_bi
.
bi
derived_laws_
sbi
.
bi
.
Import
interface
.
bi
derived_laws
.
bi
derived_laws_
later
.
bi
.
Class
Plainly
(
A
:
Type
)
:
=
plainly
:
A
→
A
.
Hint
Mode
Plainly
!
:
typeclass_instances
.
...
...
theories/bi/updates.v
View file @
15ce289f
From
stdpp
Require
Import
coPset
.
From
iris
.
bi
Require
Import
interface
derived_laws_
sbi
big_op
plainly
.
Import
interface
.
bi
derived_laws
_bi
.
bi
derived_laws_
sbi
.
bi
.
From
iris
.
bi
Require
Import
interface
derived_laws_
later
big_op
plainly
.
Import
interface
.
bi
derived_laws
.
bi
derived_laws_
later
.
bi
.
(* We first define operational type classes for the notations, and then later
bundle these operational type classes with the laws. *)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment