Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
24a9b6cf
Commit
24a9b6cf
authored
Oct 19, 2017
by
Ralf Jung
Browse files
and another test that depends on the barrier
parent
0dbc0a00
Changes
2
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
24a9b6cf
...
...
@@ -89,7 +89,6 @@ theories/proofmode/class_instances.v
theories/tests/heap_lang.v
theories/tests/one_shot.v
theories/tests/proofmode.v
theories/tests/barrier_client.v
theories/tests/list_reverse.v
theories/tests/tree_sum.v
theories/tests/ipm_paper.v
...
...
theories/tests/barrier_client.v
deleted
100644 → 0
View file @
0dbc0a00
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
heap_lang
.
lib
.
barrier
Require
Import
proof
.
From
iris
.
heap_lang
Require
Import
par
.
From
iris
.
heap_lang
Require
Import
adequacy
proofmode
.
Set
Default
Proof
Using
"Type"
.
Definition
worker
(
n
:
Z
)
:
val
:
=
λ
:
"b"
"y"
,
wait
"b"
;;
!
"y"
#
n
.
Definition
client
:
expr
:
=
let
:
"y"
:
=
ref
#
0
in
let
:
"b"
:
=
newbarrier
#()
in
(
"y"
<-
(
λ
:
"z"
,
"z"
+
#
42
)
;;
signal
"b"
)
|||
(
worker
12
"b"
"y"
|||
worker
17
"b"
"y"
).
Section
client
.
Local
Set
Default
Proof
Using
"Type*"
.
Context
`
{!
heapG
Σ
,
!
barrierG
Σ
,
!
spawnG
Σ
}.
Definition
N
:
=
nroot
.@
"barrier"
.
Definition
y_inv
(
q
:
Qp
)
(
l
:
loc
)
:
iProp
Σ
:
=
(
∃
f
:
val
,
l
↦
{
q
}
f
∗
□
∀
n
:
Z
,
WP
f
#
n
{{
v
,
⌜
v
=
#(
n
+
42
)
⌝
}})%
I
.
Lemma
y_inv_split
q
l
:
y_inv
q
l
-
∗
(
y_inv
(
q
/
2
)
l
∗
y_inv
(
q
/
2
)
l
).
Proof
.
iDestruct
1
as
(
f
)
"[[Hl1 Hl2] #Hf]"
.
iSplitL
"Hl1"
;
iExists
f
;
by
iSplitL
;
try
iAlways
.
Qed
.
Lemma
worker_safe
q
(
n
:
Z
)
(
b
y
:
loc
)
:
recv
N
b
(
y_inv
q
y
)
-
∗
WP
worker
n
#
b
#
y
{{
_
,
True
}}.
Proof
.
iIntros
"Hrecv"
.
wp_lam
.
wp_let
.
wp_apply
(
wait_spec
with
"Hrecv"
).
iDestruct
1
as
(
f
)
"[Hy #Hf]"
.
wp_seq
.
wp_load
.
iApply
(
wp_wand
with
"[]"
).
iApply
"Hf"
.
by
iIntros
(
v
)
"_"
.
Qed
.
Lemma
client_safe
:
WP
client
{{
_
,
True
}}%
I
.
Proof
.
iIntros
""
;
rewrite
/
client
.
wp_alloc
y
as
"Hy"
.
wp_let
.
wp_apply
(
newbarrier_spec
N
(
y_inv
1
y
)
with
"[//]"
).
iIntros
(
l
)
"[Hr Hs]"
.
wp_let
.
iApply
(
wp_par
(
λ
_
,
True
%
I
)
(
λ
_
,
True
%
I
)
with
"[Hy Hs] [Hr]"
)
;
last
auto
.
-
(* The original thread, the sender. *)
wp_store
.
iApply
(
signal_spec
with
"[-]"
)
;
last
by
iNext
;
auto
.
iSplitR
"Hy"
;
first
by
eauto
.
iExists
_;
iSplitL
;
[
done
|].
iIntros
"!#"
(
n
).
wp_let
.
by
wp_op
.
-
(* The two spawned threads, the waiters. *)
iDestruct
(
recv_weaken
with
"[] Hr"
)
as
"Hr"
.
{
iIntros
"Hy"
.
by
iApply
(
y_inv_split
with
"Hy"
).
}
iMod
(
recv_split
with
"Hr"
)
as
"[H1 H2]"
;
first
done
.
iApply
(
wp_par
(
λ
_
,
True
%
I
)
(
λ
_
,
True
%
I
)
with
"[H1] [H2]"
)
;
last
auto
.
+
by
iApply
worker_safe
.
+
by
iApply
worker_safe
.
Qed
.
End
client
.
Section
ClosedProofs
.
Let
Σ
:
gFunctors
:
=
#[
heap
Σ
;
barrier
Σ
;
spawn
Σ
].
Lemma
client_adequate
σ
:
adequate
client
σ
(
λ
_
,
True
).
Proof
.
apply
(
heap_adequacy
Σ
)=>
?.
apply
client_safe
.
Qed
.
End
ClosedProofs
.
Print
Assumptions
client_adequate
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment