Commit 24a9b6cf authored by Ralf Jung's avatar Ralf Jung
Browse files

and another test that depends on the barrier

parent 0dbc0a00
......@@ -89,7 +89,6 @@ theories/proofmode/class_instances.v
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.heap_lang.lib.barrier Require Import proof.
From iris.heap_lang Require Import par.
From iris.heap_lang Require Import adequacy proofmode.
Set Default Proof Using "Type".
Definition worker (n : Z) : val :=
λ: "b" "y", wait "b" ;; !"y" #n.
Definition client : expr :=
let: "y" := ref #0 in
let: "b" := newbarrier #() in
("y" <- (λ: "z", "z" + #42) ;; signal "b") |||
(worker 12 "b" "y" ||| worker 17 "b" "y").
Section client.
Local Set Default Proof Using "Type*".
Context `{!heapG Σ, !barrierG Σ, !spawnG Σ}.
Definition N := nroot .@ "barrier".
Definition y_inv (q : Qp) (l : loc) : iProp Σ :=
( f : val, l {q} f n : Z, WP f #n {{ v, v = #(n + 42) }})%I.
Lemma y_inv_split q l : y_inv q l - (y_inv (q/2) l y_inv (q/2) l).
iDestruct 1 as (f) "[[Hl1 Hl2] #Hf]".
iSplitL "Hl1"; iExists f; by iSplitL; try iAlways.
Lemma worker_safe q (n : Z) (b y : loc) :
recv N b (y_inv q y) - WP worker n #b #y {{ _, True }}.
iIntros "Hrecv". wp_lam. wp_let.
wp_apply (wait_spec with "Hrecv"). iDestruct 1 as (f) "[Hy #Hf]".
wp_seq. wp_load.
iApply (wp_wand with "[]"). iApply "Hf". by iIntros (v) "_".
Lemma client_safe : WP client {{ _, True }}%I.
iIntros ""; rewrite /client. wp_alloc y as "Hy". wp_let.
wp_apply (newbarrier_spec N (y_inv 1 y) with "[//]").
iIntros (l) "[Hr Hs]". wp_let.
iApply (wp_par (λ _, True%I) (λ _, True%I) with "[Hy Hs] [Hr]"); last auto.
- (* The original thread, the sender. *)
wp_store. iApply (signal_spec with "[-]"); last by iNext; auto.
iSplitR "Hy"; first by eauto.
iExists _; iSplitL; [done|]. iIntros "!#" (n). wp_let. by wp_op.
- (* The two spawned threads, the waiters. *)
iDestruct (recv_weaken with "[] Hr") as "Hr".
{ iIntros "Hy". by iApply (y_inv_split with "Hy"). }
iMod (recv_split with "Hr") as "[H1 H2]"; first done.
iApply (wp_par (λ _, True%I) (λ _, True%I) with "[H1] [H2]"); last auto.
+ by iApply worker_safe.
+ by iApply worker_safe.
End client.
Section ClosedProofs.
Let Σ : gFunctors := #[ heapΣ ; barrierΣ ; spawnΣ ].
Lemma client_adequate σ : adequate client σ (λ _, True).
Proof. apply (heap_adequacy Σ)=> ?. apply client_safe. Qed.
End ClosedProofs.
Print Assumptions client_adequate.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment