Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
2bc880b2
Commit
2bc880b2
authored
Mar 15, 2021
by
Ralf Jung
Browse files
move error into regular .v file
parent
59d18188
Changes
2
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
2bc880b2
...
...
@@ -166,6 +166,7 @@ iris_heap_lang/lib/increment.v
iris_heap_lang/lib/diverge.v
iris_heap_lang/lib/arith.v
iris_heap_lang/lib/array.v
iris_heap_lang/lib/one_shot.v
iris_deprecated/base_logic/auth.v
iris_deprecated/base_logic/sts.v
...
...
iris_heap_lang/lib/one_shot.v
0 → 100644
View file @
2bc880b2
From
iris
.
algebra
Require
Import
excl
agree
csum
.
From
iris
.
proofmode
Require
Import
tactics
.
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
deprecated
.
program_logic
Require
Import
hoare
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
heap_lang
Require
Import
assert
proofmode
notation
adequacy
.
From
iris
.
heap_lang
.
lib
Require
Import
par
.
Set
Default
Proof
Using
"Type"
.
(** This is the introductory example from the "Iris from the Ground Up" journal
paper. *)
Unset
Mangle
Names
.
Definition
one_shot_example
:
val
:
=
λ
:
<>,
let
:
"x"
:
=
ref
NONE
in
(
(* tryset *)
(
λ
:
"n"
,
CAS
"x"
NONE
(
SOME
"n"
)),
(* check *)
(
λ
:
<>,
let
:
"y"
:
=
!
"x"
in
λ
:
<>,
match
:
"y"
with
NONE
=>
#()
|
SOME
"n"
=>
match
:
!
"x"
with
NONE
=>
assert
:
#
false
|
SOME
"m"
=>
assert
:
"n"
=
"m"
end
end
)).
Definition
one_shotR
:
=
csumR
(
exclR
unitO
)
(
agreeR
ZO
).
Definition
Pending
:
one_shotR
:
=
Cinl
(
Excl
()).
Definition
Shot
(
n
:
Z
)
:
one_shotR
:
=
Cinr
(
to_agree
n
).
Class
one_shotG
Σ
:
=
{
one_shot_inG
:
>
inG
Σ
one_shotR
}.
Definition
one_shot
Σ
:
gFunctors
:
=
#[
GFunctor
one_shotR
].
Global
Instance
subG_one_shot
Σ
{
Σ
}
:
subG
one_shot
Σ
Σ
→
one_shotG
Σ
.
Proof
.
solve_inG
.
Qed
.
Section
proof
.
Local
Set
Default
Proof
Using
"Type*"
.
Context
`
{!
heapG
Σ
,
!
one_shotG
Σ
}.
Definition
one_shot_inv
(
γ
:
gname
)
(
l
:
loc
)
:
iProp
Σ
:
=
(
l
↦
NONEV
∗
own
γ
Pending
∨
∃
n
:
Z
,
l
↦
SOMEV
#
n
∗
own
γ
(
Shot
n
))%
I
.
Lemma
wp_one_shot
(
Φ
:
val
→
iProp
Σ
)
:
(
∀
f1
f2
:
val
,
(
∀
n
:
Z
,
□
WP
f1
#
n
{{
w
,
⌜
w
=
#
true
⌝
∨
⌜
w
=
#
false
⌝
}})
∗
□
WP
f2
#()
{{
g
,
□
WP
g
#()
{{
_
,
True
}}
}}
-
∗
Φ
(
f1
,
f2
)%
V
)
⊢
WP
one_shot_example
#()
{{
Φ
}}.
Proof
.
iIntros
"Hf /="
.
pose
proof
(
nroot
.@
"N"
)
as
N
.
wp_lam
.
wp_alloc
l
as
"Hl"
.
iMod
(
own_alloc
Pending
)
as
(
γ
)
"Hγ"
;
first
done
.
iMod
(
inv_alloc
N
_
(
one_shot_inv
γ
l
)
with
"[Hl Hγ]"
)
as
"#HN"
.
{
iNext
.
iLeft
.
by
iSplitL
"Hl"
.
}
wp_pures
.
iModIntro
.
iApply
"Hf"
;
iSplit
.
-
iIntros
(
n
)
"!>"
.
wp_lam
.
wp_pures
.
wp_bind
(
CmpXchg
_
_
_
).
iInv
N
as
">[[Hl Hγ]|H]"
;
last
iDestruct
"H"
as
(
m
)
"[Hl Hγ]"
.
+
iMod
(
own_update
with
"Hγ"
)
as
"Hγ"
.
{
by
apply
cmra_update_exclusive
with
(
y
:
=
Shot
n
).
}
wp_cmpxchg_suc
.
iModIntro
.
iSplitL
;
last
(
wp_pures
;
by
eauto
).
iNext
;
iRight
;
iExists
n
;
by
iFrame
.
+
wp_cmpxchg_fail
.
iModIntro
.
iSplitL
;
last
(
wp_pures
;
by
eauto
).
rewrite
/
one_shot_inv
;
eauto
10
.
-
iIntros
"!> /="
.
wp_lam
.
wp_bind
(!
_
)%
E
.
iInv
N
as
">Hγ"
.
iAssert
(
∃
v
,
l
↦
v
∗
((
⌜
v
=
NONEV
⌝
∗
own
γ
Pending
)
∨
∃
n
:
Z
,
⌜
v
=
SOMEV
#
n
⌝
∗
own
γ
(
Shot
n
)))%
I
with
"[Hγ]"
as
"Hv"
.
{
iDestruct
"Hγ"
as
"[[Hl Hγ]|Hl]"
;
last
iDestruct
"Hl"
as
(
m
)
"[Hl Hγ]"
.
+
iExists
NONEV
.
iFrame
.
eauto
.
+
iExists
(
SOMEV
#
m
).
iFrame
.
eauto
.
}
iDestruct
"Hv"
as
(
v
)
"[Hl Hv]"
.
wp_load
.
iAssert
(
one_shot_inv
γ
l
∗
(
⌜
v
=
NONEV
⌝
∨
∃
n
:
Z
,
⌜
v
=
SOMEV
#
n
⌝
∗
own
γ
(
Shot
n
)))%
I
with
"[Hl Hv]"
as
"[Hinv #Hv]"
.
{
iDestruct
"Hv"
as
"[[% ?]|Hv]"
;
last
iDestruct
"Hv"
as
(
m
)
"[% ?]"
;
subst
.
+
iSplit
.
iLeft
;
by
iSplitL
"Hl"
.
eauto
.
+
iSplit
.
iRight
;
iExists
m
;
by
iSplitL
"Hl"
.
eauto
.
}
iSplitL
"Hinv"
;
first
by
eauto
.
iModIntro
.
wp_pures
.
iIntros
"!> !>"
.
wp_lam
.
iDestruct
"Hv"
as
"[%|Hv]"
;
last
iDestruct
"Hv"
as
(
m
)
"[% Hγ']"
;
subst
;
wp_match
;
[
done
|].
wp_bind
(!
_
)%
E
.
iInv
N
as
"[[Hl >Hγ]|H]"
;
last
iDestruct
"H"
as
(
m'
)
"[Hl Hγ]"
.
{
by
iDestruct
(
own_valid_2
with
"Hγ Hγ'"
)
as
%?.
}
wp_load
.
iDestruct
(
own_valid_2
with
"Hγ Hγ'"
)
as
%?%
to_agree_op_inv_L
;
subst
.
iModIntro
.
iSplitL
"Hl"
.
{
iNext
;
iRight
;
by
eauto
.
}
wp_smart_apply
wp_assert
.
wp_pures
.
by
case_bool_decide
.
Qed
.
Lemma
ht_one_shot
(
Φ
:
val
→
iProp
Σ
)
:
⊢
{{
True
}}
one_shot_example
#()
{{
ff
,
(
∀
n
:
Z
,
{{
True
}}
Fst
ff
#
n
{{
w
,
⌜
w
=
#
true
⌝
∨
⌜
w
=
#
false
⌝
}})
∗
{{
True
}}
Snd
ff
#()
{{
g
,
{{
True
}}
g
#()
{{
_
,
True
}}
}}
}}.
Proof
.
iIntros
"!> _"
.
iApply
wp_one_shot
.
iIntros
(
f1
f2
)
"[#Hf1 #Hf2]"
;
iSplit
.
-
iIntros
(
n
)
"!> _"
.
wp_smart_apply
"Hf1"
.
-
iIntros
"!> _"
.
wp_smart_apply
(
wp_wand
with
"Hf2"
).
by
iIntros
(
v
)
"#? !> _"
.
Qed
.
End
proof
.
(* Have a client with a closed proof. *)
Definition
client
:
expr
:
=
let
:
"ff"
:
=
one_shot_example
#()
in
(
Fst
"ff"
#
5
|||
let
:
"check"
:
=
Snd
"ff"
#()
in
"check"
#()).
Section
client
.
Context
`
{!
heapG
Σ
,
!
one_shotG
Σ
,
!
spawnG
Σ
}.
Lemma
client_safe
:
⊢
WP
client
{{
_
,
True
}}.
Proof
using
Type
*.
rewrite
/
client
.
wp_apply
wp_one_shot
.
iIntros
(
f1
f2
)
"[#Hf1 #Hf2]"
.
wp_let
.
wp_smart_apply
wp_par
.
-
wp_smart_apply
"Hf1"
.
-
wp_proj
.
wp_bind
(
f2
_
)%
E
.
iApply
wp_wand
;
first
by
iExact
"Hf2"
.
iIntros
(
check
)
"Hcheck"
.
wp_pures
.
iApply
"Hcheck"
.
-
auto
.
Qed
.
End
client
.
(** Put together all library functors. *)
Definition
client
Σ
:
gFunctors
:
=
#[
heap
Σ
;
one_shot
Σ
;
spawn
Σ
].
(** This lemma implicitly shows that these functors are enough to meet
all library assumptions. *)
Lemma
client_adequate
σ
:
adequate
NotStuck
client
σ
(
λ
_
_
,
True
).
Proof
.
apply
(
heap_adequacy
client
Σ
)=>
?.
iIntros
"_"
.
iApply
client_safe
.
Qed
.
(* Since we check the output of the test files, this means
our test suite will fail if we ever accidentally add an axiom
to anything used by this proof. *)
Print
Assumptions
client_adequate
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment