Commit 2bc880b2 authored by Ralf Jung's avatar Ralf Jung
Browse files

move error into regular .v file

parent 59d18188
......@@ -166,6 +166,7 @@ iris_heap_lang/lib/increment.v
iris_heap_lang/lib/diverge.v
iris_heap_lang/lib/arith.v
iris_heap_lang/lib/array.v
iris_heap_lang/lib/one_shot.v
iris_deprecated/base_logic/auth.v
iris_deprecated/base_logic/sts.v
......
From iris.algebra Require Import excl agree csum.
From iris.proofmode Require Import tactics.
From iris.program_logic Require Export weakestpre.
From iris.deprecated.program_logic Require Import hoare.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import assert proofmode notation adequacy.
From iris.heap_lang.lib Require Import par.
Set Default Proof Using "Type".
(** This is the introductory example from the "Iris from the Ground Up" journal
paper. *)
Unset Mangle Names.
Definition one_shot_example : val := λ: <>,
let: "x" := ref NONE in (
(* tryset *) (λ: "n",
CAS "x" NONE (SOME "n")),
(* check *) (λ: <>,
let: "y" := !"x" in λ: <>,
match: "y" with
NONE => #()
| SOME "n" =>
match: !"x" with
NONE => assert: #false
| SOME "m" => assert: "n" = "m"
end
end)).
Definition one_shotR := csumR (exclR unitO) (agreeR ZO).
Definition Pending : one_shotR := Cinl (Excl ()).
Definition Shot (n : Z) : one_shotR := Cinr (to_agree n).
Class one_shotG Σ := { one_shot_inG :> inG Σ one_shotR }.
Definition one_shotΣ : gFunctors := #[GFunctor one_shotR].
Global Instance subG_one_shotΣ {Σ} : subG one_shotΣ Σ one_shotG Σ.
Proof. solve_inG. Qed.
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapG Σ, !one_shotG Σ}.
Definition one_shot_inv (γ : gname) (l : loc) : iProp Σ :=
(l NONEV own γ Pending n : Z, l SOMEV #n own γ (Shot n))%I.
Lemma wp_one_shot (Φ : val iProp Σ) :
( f1 f2 : val,
( n : Z, WP f1 #n {{ w, w = #true w = #false }})
WP f2 #() {{ g, WP g #() {{ _, True }} }} - Φ (f1,f2)%V)
WP one_shot_example #() {{ Φ }}.
Proof.
iIntros "Hf /=". pose proof (nroot .@ "N") as N.
wp_lam. wp_alloc l as "Hl".
iMod (own_alloc Pending) as (γ) "Hγ"; first done.
iMod (inv_alloc N _ (one_shot_inv γ l) with "[Hl Hγ]") as "#HN".
{ iNext. iLeft. by iSplitL "Hl". }
wp_pures. iModIntro. iApply "Hf"; iSplit.
- iIntros (n) "!>". wp_lam. wp_pures. wp_bind (CmpXchg _ _ _).
iInv N as ">[[Hl Hγ]|H]"; last iDestruct "H" as (m) "[Hl Hγ]".
+ iMod (own_update with "Hγ") as "Hγ".
{ by apply cmra_update_exclusive with (y:=Shot n). }
wp_cmpxchg_suc. iModIntro. iSplitL; last (wp_pures; by eauto).
iNext; iRight; iExists n; by iFrame.
+ wp_cmpxchg_fail. iModIntro. iSplitL; last (wp_pures; by eauto).
rewrite /one_shot_inv; eauto 10.
- iIntros "!> /=". wp_lam. wp_bind (! _)%E.
iInv N as ">Hγ".
iAssert ( v, l v ((v = NONEV own γ Pending)
n : Z, v = SOMEV #n own γ (Shot n)))%I with "[Hγ]" as "Hv".
{ iDestruct "Hγ" as "[[Hl Hγ]|Hl]"; last iDestruct "Hl" as (m) "[Hl Hγ]".
+ iExists NONEV. iFrame. eauto.
+ iExists (SOMEV #m). iFrame. eauto. }
iDestruct "Hv" as (v) "[Hl Hv]". wp_load.
iAssert (one_shot_inv γ l (v = NONEV n : Z,
v = SOMEV #n own γ (Shot n)))%I with "[Hl Hv]" as "[Hinv #Hv]".
{ iDestruct "Hv" as "[[% ?]|Hv]"; last iDestruct "Hv" as (m) "[% ?]"; subst.
+ iSplit. iLeft; by iSplitL "Hl". eauto.
+ iSplit. iRight; iExists m; by iSplitL "Hl". eauto. }
iSplitL "Hinv"; first by eauto.
iModIntro. wp_pures. iIntros "!> !>". wp_lam.
iDestruct "Hv" as "[%|Hv]"; last iDestruct "Hv" as (m) "[% Hγ']";
subst; wp_match; [done|].
wp_bind (! _)%E.
iInv N as "[[Hl >Hγ]|H]"; last iDestruct "H" as (m') "[Hl Hγ]".
{ by iDestruct (own_valid_2 with "Hγ Hγ'") as %?. }
wp_load.
iDestruct (own_valid_2 with "Hγ Hγ'") as %?%to_agree_op_inv_L; subst.
iModIntro. iSplitL "Hl".
{ iNext; iRight; by eauto. }
wp_smart_apply wp_assert. wp_pures. by case_bool_decide.
Qed.
Lemma ht_one_shot (Φ : val iProp Σ) :
{{ True }} one_shot_example #()
{{ ff,
( n : Z, {{ True }} Fst ff #n {{ w, w = #true w = #false }})
{{ True }} Snd ff #() {{ g, {{ True }} g #() {{ _, True }} }}
}}.
Proof.
iIntros "!> _". iApply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]"; iSplit.
- iIntros (n) "!> _". wp_smart_apply "Hf1".
- iIntros "!> _". wp_smart_apply (wp_wand with "Hf2"). by iIntros (v) "#? !> _".
Qed.
End proof.
(* Have a client with a closed proof. *)
Definition client : expr :=
let: "ff" := one_shot_example #() in
(Fst "ff" #5 ||| let: "check" := Snd "ff" #() in "check" #()).
Section client.
Context `{!heapG Σ, !one_shotG Σ, !spawnG Σ}.
Lemma client_safe : WP client {{ _, True }}.
Proof using Type*.
rewrite /client. wp_apply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]".
wp_let. wp_smart_apply wp_par.
- wp_smart_apply "Hf1".
- wp_proj. wp_bind (f2 _)%E. iApply wp_wand; first by iExact "Hf2".
iIntros (check) "Hcheck". wp_pures. iApply "Hcheck".
- auto.
Qed.
End client.
(** Put together all library functors. *)
Definition clientΣ : gFunctors := #[ heapΣ; one_shotΣ; spawnΣ ].
(** This lemma implicitly shows that these functors are enough to meet
all library assumptions. *)
Lemma client_adequate σ : adequate NotStuck client σ (λ _ _, True).
Proof. apply (heap_adequacy clientΣ)=> ?. iIntros "_". iApply client_safe. Qed.
(* Since we check the output of the test files, this means
our test suite will fail if we ever accidentally add an axiom
to anything used by this proof. *)
Print Assumptions client_adequate.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment