Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
7041c043
Commit
7041c043
authored
Oct 13, 2018
by
Robbert Krebbers
Browse files
`(P → Q) ⊣⊢ ∃ R, R ∧ <pers> (P ∧ R -∗ Q)` holds for general BIs.
parent
f426901d
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/bi/derived_laws_bi.v
View file @
7041c043
...
...
@@ -962,16 +962,6 @@ Section persistently_affine_bi.
rewrite
assoc
-
persistently_and_sep_r
.
by
rewrite
persistently_elim
impl_elim_r
.
Qed
.
Lemma
impl_alt
P
Q
:
(
P
→
Q
)
⊣
⊢
∃
R
,
R
∧
<
pers
>
(
P
∧
R
-
∗
Q
).
Proof
.
apply
(
anti_symm
(
⊢
)).
-
rewrite
-(
right_id
True
%
I
bi_and
(
P
→
Q
)%
I
)
-(
exist_intro
(
P
→
Q
)%
I
).
apply
and_mono_r
.
rewrite
-
persistently_pure
.
apply
persistently_intro'
,
wand_intro_l
.
by
rewrite
impl_elim_r
persistently_pure
right_id
.
-
apply
exist_elim
=>
R
.
apply
impl_intro_l
.
by
rewrite
assoc
persistently_and_sep_r
persistently_elim
wand_elim_r
.
Qed
.
End
persistently_affine_bi
.
(* The intuitionistic modality *)
...
...
@@ -1082,6 +1072,16 @@ Proof.
apply
sep_mono
;
first
done
.
apply
and_elim_r
.
Qed
.
Lemma
impl_alt
P
Q
:
(
P
→
Q
)
⊣
⊢
∃
R
,
R
∧
<
pers
>
(
P
∧
R
-
∗
Q
).
Proof
.
apply
(
anti_symm
(
⊢
)).
-
rewrite
-(
right_id
True
%
I
bi_and
(
P
→
Q
)%
I
)
-(
exist_intro
(
P
→
Q
)%
I
).
apply
and_mono_r
.
rewrite
impl_elim_r
-
entails_wand
//.
apply
persistently_emp_intro
.
-
apply
exist_elim
=>
R
.
apply
impl_intro_l
.
rewrite
assoc
persistently_and_intuitionistically_sep_r
.
by
rewrite
intuitionistically_elim
wand_elim_r
.
Qed
.
Section
bi_affine_intuitionistically
.
Context
`
{
BiAffine
PROP
}.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment