Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
d211f644
Commit
d211f644
authored
Feb 01, 2021
by
Ralf Jung
Browse files
rename u?frac_op/valid' to remove the final '
parent
209933c8
Changes
6
Hide whitespace changes
Inline
Side-by-side
CHANGELOG.md
View file @
d211f644
...
...
@@ -73,6 +73,9 @@ HeapLang, which is now in a separate package `coq-iris-heap-lang`.
*
Rename typeclass instances of CMRA operational typeclasses (
`Op`
,
`Core`
,
`PCore`
,
`Valid`
,
`ValidN`
,
`Unit`
) to have a
`_instance`
suffix, so that
their original names are available to use as lemma names.
*
Rename
`frac_valid'`
→
`frac_valid`
,
`frac_op'`
→
`frac_op`
,
`ufrac_op'`
→
`ufrac_op`
. Those names were previously blocked by typeclass
instances.
**Changes in `bi`:**
...
...
@@ -253,6 +256,8 @@ s/\bcmraT\b/cmra/g
s/\bCmraT\b/Cmra/g
s/\bucmraT\b/ucmra/g
s/\bUcmraT\b/Ucmra/g
# u?frac_op/valid lemmas
s/\b(u?frac_(op|valid))'/\1/g
EOF
```
...
...
iris/algebra/frac.v
View file @
d211f644
...
...
@@ -19,9 +19,9 @@ Section frac.
Local
Instance
frac_pcore_instance
:
PCore
frac
:
=
λ
_
,
None
.
Local
Instance
frac_op_instance
:
Op
frac
:
=
λ
x
y
,
(
x
+
y
)%
Qp
.
Lemma
frac_valid
'
p
:
✓
p
↔
(
p
≤
1
)%
Qp
.
Lemma
frac_valid
p
:
✓
p
↔
(
p
≤
1
)%
Qp
.
Proof
.
done
.
Qed
.
Lemma
frac_op
'
p
q
:
p
⋅
q
=
(
p
+
q
)%
Qp
.
Lemma
frac_op
p
q
:
p
⋅
q
=
(
p
+
q
)%
Qp
.
Proof
.
done
.
Qed
.
Lemma
frac_included
p
q
:
p
≼
q
↔
(
p
<
q
)%
Qp
.
Proof
.
by
rewrite
Qp_lt_sum
.
Qed
.
...
...
@@ -32,7 +32,7 @@ Section frac.
Definition
frac_ra_mixin
:
RAMixin
frac
.
Proof
.
split
;
try
apply
_;
try
done
.
intros
p
q
.
rewrite
!
frac_valid
'
frac_op
'
=>
?.
intros
p
q
.
rewrite
!
frac_valid
frac_op
=>
?.
trans
(
p
+
q
)%
Qp
;
last
done
.
apply
Qp_le_add_l
.
Qed
.
Canonical
Structure
fracR
:
=
discreteR
frac
frac_ra_mixin
.
...
...
@@ -51,5 +51,5 @@ Section frac.
Global
Instance
frac_is_op
q1
q2
:
IsOp
(
q1
+
q2
)%
Qp
q1
q2
|
10
.
Proof
.
done
.
Qed
.
Global
Instance
is_op_frac
q
:
IsOp'
q
(
q
/
2
)%
Qp
(
q
/
2
)%
Qp
.
Proof
.
by
rewrite
/
IsOp'
/
IsOp
frac_op
'
Qp_div_2
.
Qed
.
Proof
.
by
rewrite
/
IsOp'
/
IsOp
frac_op
Qp_div_2
.
Qed
.
End
frac
.
iris/algebra/ufrac.v
View file @
d211f644
...
...
@@ -18,7 +18,7 @@ Section ufrac.
Local
Instance
ufrac_pcore_instance
:
PCore
ufrac
:
=
λ
_
,
None
.
Local
Instance
ufrac_op_instance
:
Op
ufrac
:
=
λ
x
y
,
(
x
+
y
)%
Qp
.
Lemma
ufrac_op
'
p
q
:
p
⋅
q
=
(
p
+
q
)%
Qp
.
Lemma
ufrac_op
p
q
:
p
⋅
q
=
(
p
+
q
)%
Qp
.
Proof
.
done
.
Qed
.
Lemma
ufrac_included
p
q
:
p
≼
q
↔
(
p
<
q
)%
Qp
.
Proof
.
by
rewrite
Qp_lt_sum
.
Qed
.
...
...
@@ -39,5 +39,5 @@ Section ufrac.
Proof
.
intros
p
_
.
apply
Qp_add_id_free
.
Qed
.
Global
Instance
is_op_ufrac
q
:
IsOp'
q
(
q
/
2
)%
Qp
(
q
/
2
)%
Qp
.
Proof
.
by
rewrite
/
IsOp'
/
IsOp
ufrac_op
'
Qp_div_2
.
Qed
.
Proof
.
by
rewrite
/
IsOp'
/
IsOp
ufrac_op
Qp_div_2
.
Qed
.
End
ufrac
.
iris/algebra/view.v
View file @
d211f644
...
...
@@ -518,7 +518,7 @@ Section cmra.
Proof
.
rewrite
!
local_update_unital
.
move
=>
Hup
Hrel
n
[[[
q
ag
]|]
bf
]
/
view_both_validN
Hrel'
[/=].
-
rewrite
right_id
-
Some_op
-
pair_op
frac_op
'
=>
/
Some_dist_inj
[/=
H1q
_
].
-
rewrite
right_id
-
Some_op
-
pair_op
frac_op
=>
/
Some_dist_inj
[/=
H1q
_
].
by
destruct
(
Qp_add_id_free
1
q
).
-
rewrite
!
left_id
=>
_
Hb0
.
destruct
(
Hup
n
bf
)
as
[?
Hb0'
]
;
[
by
eauto
using
view_rel_validN
..|].
...
...
iris/base_logic/algebra.v
View file @
d211f644
...
...
@@ -23,7 +23,7 @@ Lemma discrete_fun_validI {A} {B : A → ucmra} (g : discrete_fun B) :
Proof
.
by
uPred
.
unseal
.
Qed
.
Lemma
frac_validI
(
q
:
Qp
)
:
✓
q
⊣
⊢
⌜
q
≤
1
⌝
%
Qp
.
Proof
.
rewrite
uPred
.
discrete_valid
frac_valid
'
//.
Qed
.
Proof
.
rewrite
uPred
.
discrete_valid
frac_valid
//.
Qed
.
Section
gmap_ofe
.
Context
`
{
Countable
K
}
{
A
:
ofe
}.
...
...
tests/one_shot_once.v
View file @
d211f644
...
...
@@ -45,7 +45,7 @@ Local Hint Extern 0 (environments.envs_entails _ (one_shot_inv _ _)) =>
Lemma
pending_split
γ
q
:
own
γ
(
Pending
q
)
⊣
⊢
own
γ
(
Pending
(
q
/
2
))
∗
own
γ
(
Pending
(
q
/
2
)).
Proof
.
rewrite
/
Pending
.
rewrite
-
own_op
-
Cinl_op
.
rewrite
frac_op
'
Qp_div_2
//.
rewrite
/
Pending
.
rewrite
-
own_op
-
Cinl_op
.
rewrite
frac_op
Qp_div_2
//.
Qed
.
Lemma
pending_shoot
γ
n
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment