Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
eb3283dc
Commit
eb3283dc
authored
Jun 15, 2018
by
Robbert Krebbers
Browse files
Tests for `big_sepL2`.
parent
982a55c7
Changes
2
Hide whitespace changes
Inline
Side-by-side
tests/proofmode.ref
View file @
eb3283dc
...
...
@@ -88,6 +88,32 @@ Tactic failure: iFrame: cannot frame Q.
--------------------------------------∗
P
1 subgoal
PROP : sbi
x1, x2 : nat
l1, l2 : list nat
P : PROP
============================
"HP" : P
_ : [∗ list] y1;y2 ∈ [];l2, <affine> ⌜y1 = y2⌝
_ : <affine> ⌜x1 = x2⌝
∗ ([∗ list] y1;y2 ∈ l1;(l2 ++ l2), <affine> ⌜y1 = y2⌝)
--------------------------------------∗
P ∨ True ∗ ([∗ list] _;_ ∈ l1;l2, True)
1 subgoal
PROP : sbi
Φ : nat → nat → PROP
x1, x2 : nat
l1, l2 : list nat
============================
_ : Φ x1 x2
_ : [∗ list] y1;y2 ∈ l1;l2, Φ y1 y2
--------------------------------------∗
<absorb> Φ x1 x2
1 subgoal
PROP : sbi
...
...
tests/proofmode.v
View file @
eb3283dc
...
...
@@ -486,11 +486,28 @@ Proof.
Qed
.
Lemma
test_big_sepL_simpl
x
(
l
:
list
nat
)
P
:
P
-
∗
P
-
∗
([
∗
list
]
k
↦
y
∈
l
,
<
affine
>
⌜
y
=
y
⌝
)
-
∗
([
∗
list
]
y
∈
x
::
l
,
<
affine
>
⌜
y
=
y
⌝
)
-
∗
P
.
Proof
.
iIntros
"HP ?? /="
.
Show
.
done
.
Qed
.
Lemma
test_big_sepL2_simpl
x1
x2
(
l1
l2
:
list
nat
)
P
:
P
-
∗
([
∗
list
]
k
↦
y1
;
y2
∈
[]
;
l2
,
<
affine
>
⌜
y1
=
y2
⌝
)
-
∗
([
∗
list
]
y1
;
y2
∈
x1
::
l1
;
(
x2
::
l2
)
++
l2
,
<
affine
>
⌜
y1
=
y2
⌝
)
-
∗
P
∨
([
∗
list
]
y1
;
y2
∈
x1
::
l1
;
x2
::
l2
,
True
).
Proof
.
iIntros
"HP ?? /="
.
Show
.
by
iLeft
.
Qed
.
Lemma
test_big_sepL2_iDestruct
(
Φ
:
nat
→
nat
→
PROP
)
x1
x2
(
l1
l2
:
list
nat
)
:
([
∗
list
]
y1
;
y2
∈
x1
::
l1
;
x2
::
l2
,
Φ
y1
y2
)
-
∗
<
absorb
>
Φ
x1
x2
.
Proof
.
iIntros
"[??]"
.
Show
.
iFrame
.
Qed
.
Lemma
test_big_sepL2_iFrame
(
Φ
:
nat
→
nat
→
PROP
)
(
l1
l2
:
list
nat
)
P
:
Φ
0
10
-
∗
([
∗
list
]
y1
;
y2
∈
l1
;
l2
,
Φ
y1
y2
)
-
∗
([
∗
list
]
y1
;
y2
∈
(
0
::
l1
)
;
(
10
::
l2
),
Φ
y1
y2
).
Proof
.
iIntros
"$ ?"
.
iFrame
.
Qed
.
End
tests
.
(** Test specifically if certain things print correctly. *)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment