Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
Iris
Commits
fbea3aa1
Commit
fbea3aa1
authored
Feb 27, 2018
by
Robbert Krebbers
Browse files
Move modality record and instances to a separate file.
parent
25ab3a07
Changes
5
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
fbea3aa1
...
...
@@ -101,6 +101,8 @@ theories/proofmode/notation.v
theories/proofmode/classes.v
theories/proofmode/class_instances.v
theories/proofmode/monpred.v
theories/proofmode/modalities.v
theories/proofmode/modality_instances.v
theories/tests/heap_lang.v
theories/tests/one_shot.v
theories/tests/proofmode.v
...
...
theories/proofmode/class_instances.v
View file @
fbea3aa1
From
stdpp
Require
Import
nat_cancel
.
From
iris
.
bi
Require
Import
bi
tactics
.
From
iris
.
proofmode
Require
Export
classes
.
From
iris
.
proofmode
Require
Export
modality_instances
classes
.
Set
Default
Proof
Using
"Type"
.
Import
bi
.
...
...
theories/proofmode/classes.v
View file @
fbea3aa1
From
iris
.
bi
Require
Export
bi
.
From
iris
.
proofmode
Require
Export
modalities
.
From
stdpp
Require
Import
namespaces
.
Set
Default
Proof
Using
"Type"
.
Import
bi
.
...
...
@@ -83,156 +84,16 @@ Arguments IntoPersistent {_} _ _%I _%I : simpl never.
Arguments
into_persistent
{
_
}
_
_
%
I
_
%
I
{
_
}.
Hint
Mode
IntoPersistent
+
+
!
-
:
typeclass_instances
.
(* The `iModIntro` tactic is not tied the Iris modalities, but can be
instantiated with a variety of modalities.
In order to plug in a modality, one has to decide for both the persistent and
spatial what action should be performed upon introducing the modality:
- Introduction is only allowed when the context is empty.
- Introduction is only allowed when all hypotheses satisfy some predicate
`C : PROP → Prop` (where `C` should be a type class).
- Introduction will transform each hypotheses using a type class
`C : PROP → PROP → Prop`, where the first parameter is the input and the
second parameter is the output. Hypotheses that cannot be transformed (i.e.
for which no instance of `C` can be found) will be cleared.
- Introduction will clear the context.
- Introduction will keep the context as-if.
Formally, these actions correspond to the following inductive type: *)
Inductive
modality_intro_spec
(
PROP1
:
bi
)
:
bi
→
Type
:
=
|
MIEnvIsEmpty
{
PROP2
:
bi
}
:
modality_intro_spec
PROP1
PROP2
|
MIEnvForall
(
C
:
PROP1
→
Prop
)
:
modality_intro_spec
PROP1
PROP1
|
MIEnvTransform
{
PROP2
:
bi
}
(
C
:
PROP2
→
PROP1
→
Prop
)
:
modality_intro_spec
PROP1
PROP2
|
MIEnvClear
{
PROP2
}
:
modality_intro_spec
PROP1
PROP2
|
MIEnvId
:
modality_intro_spec
PROP1
PROP1
.
Arguments
MIEnvIsEmpty
{
_
_
}.
Arguments
MIEnvForall
{
_
}
_
.
Arguments
MIEnvTransform
{
_
_
}
_
.
Arguments
MIEnvClear
{
_
_
}.
Arguments
MIEnvId
{
_
}.
Notation
MIEnvFilter
C
:
=
(
MIEnvTransform
(
TCDiag
C
)).
Definition
modality_intro_spec_persistent
{
PROP1
PROP2
}
(
s
:
modality_intro_spec
PROP1
PROP2
)
:
(
PROP1
→
PROP2
)
→
Prop
:
=
match
s
with
|
MIEnvIsEmpty
=>
λ
M
,
True
|
MIEnvForall
C
=>
λ
M
,
(
∀
P
,
C
P
→
□
P
⊢
M
(
□
P
))
∧
(
∀
P
Q
,
M
P
∧
M
Q
⊢
M
(
P
∧
Q
))
|
MIEnvTransform
C
=>
λ
M
,
(
∀
P
Q
,
C
P
Q
→
□
P
⊢
M
(
□
Q
))
∧
(
∀
P
Q
,
M
P
∧
M
Q
⊢
M
(
P
∧
Q
))
|
MIEnvClear
=>
λ
M
,
True
|
MIEnvId
=>
λ
M
,
∀
P
,
□
P
⊢
M
(
□
P
)
end
.
Definition
modality_intro_spec_spatial
{
PROP1
PROP2
}
(
s
:
modality_intro_spec
PROP1
PROP2
)
:
(
PROP1
→
PROP2
)
→
Prop
:
=
match
s
with
|
MIEnvIsEmpty
=>
λ
M
,
True
|
MIEnvForall
C
=>
λ
M
,
∀
P
,
C
P
→
P
⊢
M
P
|
MIEnvTransform
C
=>
λ
M
,
∀
P
Q
,
C
P
Q
→
P
⊢
M
Q
|
MIEnvClear
=>
λ
M
,
∀
P
,
Absorbing
(
M
P
)
|
MIEnvId
=>
λ
M
,
∀
P
,
P
⊢
M
P
end
.
(* A modality is then a record packing together the modality with the laws it
should satisfy to justify the given actions for both contexts: *)
Record
modality_mixin
{
PROP1
PROP2
:
bi
}
(
M
:
PROP1
→
PROP2
)
(
pspec
sspec
:
modality_intro_spec
PROP1
PROP2
)
:
=
{
modality_mixin_persistent
:
modality_intro_spec_persistent
pspec
M
;
modality_mixin_spatial
:
modality_intro_spec_spatial
sspec
M
;
modality_mixin_emp
:
emp
⊢
M
emp
;
modality_mixin_mono
P
Q
:
(
P
⊢
Q
)
→
M
P
⊢
M
Q
;
modality_mixin_sep
P
Q
:
M
P
∗
M
Q
⊢
M
(
P
∗
Q
)
}.
Record
modality
(
PROP1
PROP2
:
bi
)
:
=
Modality
{
modality_car
:
>
PROP1
→
PROP2
;
modality_persistent_spec
:
modality_intro_spec
PROP1
PROP2
;
modality_spatial_spec
:
modality_intro_spec
PROP1
PROP2
;
modality_mixin_of
:
modality_mixin
modality_car
modality_persistent_spec
modality_spatial_spec
}.
Arguments
Modality
{
_
_
}
_
{
_
_
}
_
.
Arguments
modality_persistent_spec
{
_
_
}
_
.
Arguments
modality_spatial_spec
{
_
_
}
_
.
Section
modality
.
Context
{
PROP1
PROP2
}
(
M
:
modality
PROP1
PROP2
).
Lemma
modality_persistent_transform
C
P
Q
:
modality_persistent_spec
M
=
MIEnvTransform
C
→
C
P
Q
→
□
P
⊢
M
(
□
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_and_transform
C
P
Q
:
modality_persistent_spec
M
=
MIEnvTransform
C
→
M
P
∧
M
Q
⊢
M
(
P
∧
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_transform
C
P
Q
:
modality_spatial_spec
M
=
MIEnvTransform
C
→
C
P
Q
→
P
⊢
M
Q
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_clear
P
:
modality_spatial_spec
M
=
MIEnvClear
→
Absorbing
(
M
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_emp
:
emp
⊢
M
emp
.
Proof
.
eapply
modality_mixin_emp
,
modality_mixin_of
.
Qed
.
Lemma
modality_mono
P
Q
:
(
P
⊢
Q
)
→
M
P
⊢
M
Q
.
Proof
.
eapply
modality_mixin_mono
,
modality_mixin_of
.
Qed
.
Lemma
modality_sep
P
Q
:
M
P
∗
M
Q
⊢
M
(
P
∗
Q
).
Proof
.
eapply
modality_mixin_sep
,
modality_mixin_of
.
Qed
.
Global
Instance
modality_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
M
.
Proof
.
intros
P
Q
.
apply
modality_mono
.
Qed
.
Global
Instance
modality_flip_mono'
:
Proper
(
flip
(
⊢
)
==>
flip
(
⊢
))
M
.
Proof
.
intros
P
Q
.
apply
modality_mono
.
Qed
.
Global
Instance
modality_proper
:
Proper
((
≡
)
==>
(
≡
))
M
.
Proof
.
intros
P
Q
.
rewrite
!
equiv_spec
=>
-[??]
;
eauto
using
modality_mono
.
Qed
.
End
modality
.
Section
modality1
.
Context
{
PROP
}
(
M
:
modality
PROP
PROP
).
Lemma
modality_persistent_forall
C
P
:
modality_persistent_spec
M
=
MIEnvForall
C
→
C
P
→
□
P
⊢
M
(
□
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_and_forall
C
P
Q
:
modality_persistent_spec
M
=
MIEnvForall
C
→
M
P
∧
M
Q
⊢
M
(
P
∧
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_persistent_id
P
:
modality_persistent_spec
M
=
MIEnvId
→
□
P
⊢
M
(
□
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_forall
C
P
:
modality_spatial_spec
M
=
MIEnvForall
C
→
C
P
→
P
⊢
M
P
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_id
P
:
modality_spatial_spec
M
=
MIEnvId
→
P
⊢
M
P
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_persistent_forall_big_and
C
Ps
:
modality_persistent_spec
M
=
MIEnvForall
C
→
Forall
C
Ps
→
□
[
∧
]
Ps
⊢
M
(
□
[
∧
]
Ps
).
Proof
.
induction
2
as
[|
P
Ps
?
_
IH
]
;
simpl
.
-
by
rewrite
persistently_pure
affinely_True_emp
affinely_emp
-
modality_emp
.
-
rewrite
affinely_persistently_and
-
modality_and_forall
//
-
IH
.
by
rewrite
{
1
}(
modality_persistent_forall
_
P
).
Qed
.
Lemma
modality_spatial_forall_big_sep
C
Ps
:
modality_spatial_spec
M
=
MIEnvForall
C
→
Forall
C
Ps
→
[
∗
]
Ps
⊢
M
([
∗
]
Ps
).
Proof
.
induction
2
as
[|
P
Ps
?
_
IH
]
;
simpl
.
-
by
rewrite
-
modality_emp
.
-
by
rewrite
-
modality_sep
-
IH
{
1
}(
modality_spatial_forall
_
P
).
Qed
.
End
modality1
.
(** The [FromModal M P Q] class is used by the [iModIntro] tactic to transform
a goal [P] into a modality [M] and proposition [Q].
The input is [P] and the outputs are [M] and [Q]. *)
The input is [P] and the outputs are [M] and [Q].
For modalities [M] that do not need to augment the proof mode environment, one
can define an instance [FromModal modality_id (M P) P]. Defining such an
only imposes the proof obligation [P ⊢ M P]. Examples of modalities that have
such an instance are [bupd], [fupd], [except_0], [monPred_relatively] and
[bi_absorbingly]. *)
Class
FromModal
{
PROP1
PROP2
:
bi
}
(
M
:
modality
PROP1
PROP2
)
(
P
:
PROP2
)
(
Q
:
PROP1
)
:
=
from_modal
:
M
Q
⊢
P
.
...
...
@@ -240,16 +101,6 @@ Arguments FromModal {_ _} _ _%I _%I : simpl never.
Arguments
from_modal
{
_
_
}
_
_
%
I
_
%
I
{
_
}.
Hint
Mode
FromModal
-
+
-
!
-
:
typeclass_instances
.
(** The identity modality [modality_id] can be used in combination with
[FromModal modality_id] to support introduction for modalities that enjoy
[P ⊢ M P]. This is done by defining an instance [FromModal modality_id (M P) P],
which will instruct [iModIntro] to introduce the modality without modifying the
proof mode context. Examples of such modalities are [bupd], [fupd], [except_0],
[monPred_relatively] and [bi_absorbingly]. *)
Lemma
modality_id_mixin
{
PROP
:
bi
}
:
modality_mixin
(@
id
PROP
)
MIEnvId
MIEnvId
.
Proof
.
split
;
simpl
;
eauto
.
Qed
.
Definition
modality_id
{
PROP
:
bi
}
:
=
Modality
(@
id
PROP
)
modality_id_mixin
.
Class
FromAffinely
{
PROP
:
bi
}
(
P
Q
:
PROP
)
:
=
from_affinely
:
bi_affinely
Q
⊢
P
.
Arguments
FromAffinely
{
_
}
_
%
I
_
%
type_scope
:
simpl
never
.
...
...
theories/proofmode/modalities.v
0 → 100644
View file @
fbea3aa1
From
iris
.
bi
Require
Export
bi
.
From
stdpp
Require
Import
namespaces
.
Set
Default
Proof
Using
"Type"
.
Import
bi
.
(** The `iModIntro` tactic is not tied the Iris modalities, but can be
instantiated with a variety of modalities.
In order to plug in a modality, one has to decide for both the persistent and
spatial what action should be performed upon introducing the modality:
- Introduction is only allowed when the context is empty.
- Introduction is only allowed when all hypotheses satisfy some predicate
`C : PROP → Prop` (where `C` should be a type class).
- Introduction will transform each hypotheses using a type class
`C : PROP → PROP → Prop`, where the first parameter is the input and the
second parameter is the output. Hypotheses that cannot be transformed (i.e.
for which no instance of `C` can be found) will be cleared.
- Introduction will clear the context.
- Introduction will keep the context as-if.
Formally, these actions correspond to the following inductive type: *)
Inductive
modality_intro_spec
(
PROP1
:
bi
)
:
bi
→
Type
:
=
|
MIEnvIsEmpty
{
PROP2
:
bi
}
:
modality_intro_spec
PROP1
PROP2
|
MIEnvForall
(
C
:
PROP1
→
Prop
)
:
modality_intro_spec
PROP1
PROP1
|
MIEnvTransform
{
PROP2
:
bi
}
(
C
:
PROP2
→
PROP1
→
Prop
)
:
modality_intro_spec
PROP1
PROP2
|
MIEnvClear
{
PROP2
}
:
modality_intro_spec
PROP1
PROP2
|
MIEnvId
:
modality_intro_spec
PROP1
PROP1
.
Arguments
MIEnvIsEmpty
{
_
_
}.
Arguments
MIEnvForall
{
_
}
_
.
Arguments
MIEnvTransform
{
_
_
}
_
.
Arguments
MIEnvClear
{
_
_
}.
Arguments
MIEnvId
{
_
}.
Notation
MIEnvFilter
C
:
=
(
MIEnvTransform
(
TCDiag
C
)).
Definition
modality_intro_spec_persistent
{
PROP1
PROP2
}
(
s
:
modality_intro_spec
PROP1
PROP2
)
:
(
PROP1
→
PROP2
)
→
Prop
:
=
match
s
with
|
MIEnvIsEmpty
=>
λ
M
,
True
|
MIEnvForall
C
=>
λ
M
,
(
∀
P
,
C
P
→
□
P
⊢
M
(
□
P
))
∧
(
∀
P
Q
,
M
P
∧
M
Q
⊢
M
(
P
∧
Q
))
|
MIEnvTransform
C
=>
λ
M
,
(
∀
P
Q
,
C
P
Q
→
□
P
⊢
M
(
□
Q
))
∧
(
∀
P
Q
,
M
P
∧
M
Q
⊢
M
(
P
∧
Q
))
|
MIEnvClear
=>
λ
M
,
True
|
MIEnvId
=>
λ
M
,
∀
P
,
□
P
⊢
M
(
□
P
)
end
.
Definition
modality_intro_spec_spatial
{
PROP1
PROP2
}
(
s
:
modality_intro_spec
PROP1
PROP2
)
:
(
PROP1
→
PROP2
)
→
Prop
:
=
match
s
with
|
MIEnvIsEmpty
=>
λ
M
,
True
|
MIEnvForall
C
=>
λ
M
,
∀
P
,
C
P
→
P
⊢
M
P
|
MIEnvTransform
C
=>
λ
M
,
∀
P
Q
,
C
P
Q
→
P
⊢
M
Q
|
MIEnvClear
=>
λ
M
,
∀
P
,
Absorbing
(
M
P
)
|
MIEnvId
=>
λ
M
,
∀
P
,
P
⊢
M
P
end
.
(* A modality is then a record packing together the modality with the laws it
should satisfy to justify the given actions for both contexts: *)
Record
modality_mixin
{
PROP1
PROP2
:
bi
}
(
M
:
PROP1
→
PROP2
)
(
pspec
sspec
:
modality_intro_spec
PROP1
PROP2
)
:
=
{
modality_mixin_persistent
:
modality_intro_spec_persistent
pspec
M
;
modality_mixin_spatial
:
modality_intro_spec_spatial
sspec
M
;
modality_mixin_emp
:
emp
⊢
M
emp
;
modality_mixin_mono
P
Q
:
(
P
⊢
Q
)
→
M
P
⊢
M
Q
;
modality_mixin_sep
P
Q
:
M
P
∗
M
Q
⊢
M
(
P
∗
Q
)
}.
Record
modality
(
PROP1
PROP2
:
bi
)
:
=
Modality
{
modality_car
:
>
PROP1
→
PROP2
;
modality_persistent_spec
:
modality_intro_spec
PROP1
PROP2
;
modality_spatial_spec
:
modality_intro_spec
PROP1
PROP2
;
modality_mixin_of
:
modality_mixin
modality_car
modality_persistent_spec
modality_spatial_spec
}.
Arguments
Modality
{
_
_
}
_
{
_
_
}
_
.
Arguments
modality_persistent_spec
{
_
_
}
_
.
Arguments
modality_spatial_spec
{
_
_
}
_
.
Section
modality
.
Context
{
PROP1
PROP2
}
(
M
:
modality
PROP1
PROP2
).
Lemma
modality_persistent_transform
C
P
Q
:
modality_persistent_spec
M
=
MIEnvTransform
C
→
C
P
Q
→
□
P
⊢
M
(
□
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_and_transform
C
P
Q
:
modality_persistent_spec
M
=
MIEnvTransform
C
→
M
P
∧
M
Q
⊢
M
(
P
∧
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_transform
C
P
Q
:
modality_spatial_spec
M
=
MIEnvTransform
C
→
C
P
Q
→
P
⊢
M
Q
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_clear
P
:
modality_spatial_spec
M
=
MIEnvClear
→
Absorbing
(
M
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_emp
:
emp
⊢
M
emp
.
Proof
.
eapply
modality_mixin_emp
,
modality_mixin_of
.
Qed
.
Lemma
modality_mono
P
Q
:
(
P
⊢
Q
)
→
M
P
⊢
M
Q
.
Proof
.
eapply
modality_mixin_mono
,
modality_mixin_of
.
Qed
.
Lemma
modality_sep
P
Q
:
M
P
∗
M
Q
⊢
M
(
P
∗
Q
).
Proof
.
eapply
modality_mixin_sep
,
modality_mixin_of
.
Qed
.
Global
Instance
modality_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
M
.
Proof
.
intros
P
Q
.
apply
modality_mono
.
Qed
.
Global
Instance
modality_flip_mono'
:
Proper
(
flip
(
⊢
)
==>
flip
(
⊢
))
M
.
Proof
.
intros
P
Q
.
apply
modality_mono
.
Qed
.
Global
Instance
modality_proper
:
Proper
((
≡
)
==>
(
≡
))
M
.
Proof
.
intros
P
Q
.
rewrite
!
equiv_spec
=>
-[??]
;
eauto
using
modality_mono
.
Qed
.
End
modality
.
Section
modality1
.
Context
{
PROP
}
(
M
:
modality
PROP
PROP
).
Lemma
modality_persistent_forall
C
P
:
modality_persistent_spec
M
=
MIEnvForall
C
→
C
P
→
□
P
⊢
M
(
□
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_and_forall
C
P
Q
:
modality_persistent_spec
M
=
MIEnvForall
C
→
M
P
∧
M
Q
⊢
M
(
P
∧
Q
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_persistent_id
P
:
modality_persistent_spec
M
=
MIEnvId
→
□
P
⊢
M
(
□
P
).
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_forall
C
P
:
modality_spatial_spec
M
=
MIEnvForall
C
→
C
P
→
P
⊢
M
P
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_spatial_id
P
:
modality_spatial_spec
M
=
MIEnvId
→
P
⊢
M
P
.
Proof
.
destruct
M
as
[???
[]]
;
naive_solver
.
Qed
.
Lemma
modality_persistent_forall_big_and
C
Ps
:
modality_persistent_spec
M
=
MIEnvForall
C
→
Forall
C
Ps
→
□
[
∧
]
Ps
⊢
M
(
□
[
∧
]
Ps
).
Proof
.
induction
2
as
[|
P
Ps
?
_
IH
]
;
simpl
.
-
by
rewrite
persistently_pure
affinely_True_emp
affinely_emp
-
modality_emp
.
-
rewrite
affinely_persistently_and
-
modality_and_forall
//
-
IH
.
by
rewrite
{
1
}(
modality_persistent_forall
_
P
).
Qed
.
Lemma
modality_spatial_forall_big_sep
C
Ps
:
modality_spatial_spec
M
=
MIEnvForall
C
→
Forall
C
Ps
→
[
∗
]
Ps
⊢
M
([
∗
]
Ps
).
Proof
.
induction
2
as
[|
P
Ps
?
_
IH
]
;
simpl
.
-
by
rewrite
-
modality_emp
.
-
by
rewrite
-
modality_sep
-
IH
{
1
}(
modality_spatial_forall
_
P
).
Qed
.
End
modality1
.
(** The identity modality [modality_id] can be used in combination with
[FromModal modality_id] to support introduction for modalities that enjoy
[P ⊢ M P]. This is done by defining an instance [FromModal modality_id (M P) P],
which will instruct [iModIntro] to introduce the modality without modifying the
proof mode context. Examples of such modalities are [bupd], [fupd], [except_0],
[monPred_relatively] and [bi_absorbingly]. *)
Lemma
modality_id_mixin
{
PROP
:
bi
}
:
modality_mixin
(@
id
PROP
)
MIEnvId
MIEnvId
.
Proof
.
split
;
simpl
;
eauto
.
Qed
.
Definition
modality_id
{
PROP
:
bi
}
:
=
Modality
(@
id
PROP
)
modality_id_mixin
.
theories/proofmode/modality_instances.v
0 → 100644
View file @
fbea3aa1
From
iris
.
bi
Require
Import
bi
.
From
iris
.
proofmode
Require
Export
classes
.
Set
Default
Proof
Using
"Type"
.
Import
bi
.
Section
bi_modalities
.
Context
{
PROP
:
bi
}.
Lemma
modality_persistently_mixin
:
modality_mixin
(@
bi_persistently
PROP
)
MIEnvId
MIEnvClear
.
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
persistently_intro
,
persistently_mono
,
persistently_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_persistently
:
=
Modality
_
modality_persistently_mixin
.
Lemma
modality_affinely_mixin
:
modality_mixin
(@
bi_affinely
PROP
)
MIEnvId
(
MIEnvForall
Affine
).
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
affinely_intro
,
affinely_mono
,
affinely_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely
:
=
Modality
_
modality_affinely_mixin
.
Lemma
modality_affinely_persistently_mixin
:
modality_mixin
(
λ
P
:
PROP
,
□
P
)%
I
MIEnvId
MIEnvIsEmpty
.
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
affinely_persistently_emp
,
affinely_mono
,
persistently_mono
,
affinely_persistently_idemp
,
affinely_persistently_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely_persistently
:
=
Modality
_
modality_affinely_persistently_mixin
.
Lemma
modality_plainly_mixin
:
modality_mixin
(@
bi_plainly
PROP
)
(
MIEnvForall
Plain
)
MIEnvClear
.
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
plainly_intro
,
plainly_mono
,
plainly_and
,
plainly_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_plainly
:
=
Modality
_
modality_plainly_mixin
.
Lemma
modality_affinely_plainly_mixin
:
modality_mixin
(
λ
P
:
PROP
,
■
P
)%
I
(
MIEnvForall
Plain
)
MIEnvIsEmpty
.
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
affinely_plainly_emp
,
affinely_intro
,
plainly_intro
,
affinely_mono
,
plainly_mono
,
affinely_plainly_idemp
,
affinely_plainly_and
,
affinely_plainly_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely_plainly
:
=
Modality
_
modality_affinely_plainly_mixin
.
Lemma
modality_embed_mixin
`
{
BiEmbedding
PROP
PROP'
}
:
modality_mixin
(@
bi_embed
PROP
PROP'
_
)
(
MIEnvTransform
IntoEmbed
)
(
MIEnvTransform
IntoEmbed
).
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
bi_embed_emp
,
bi_embed_sep
,
bi_embed_and
.
-
intros
P
Q
.
rewrite
/
IntoEmbed
=>
->.
by
rewrite
bi_embed_affinely
bi_embed_persistently
.
-
by
intros
P
Q
->.
Qed
.
Definition
modality_embed
`
{
BiEmbedding
PROP
PROP'
}
:
=
Modality
_
modality_embed_mixin
.
End
bi_modalities
.
Section
sbi_modalities
.
Context
{
PROP
:
sbi
}.
Lemma
modality_laterN_mixin
n
:
modality_mixin
(@
sbi_laterN
PROP
n
)
(
MIEnvTransform
(
MaybeIntoLaterN
false
n
))
(
MIEnvTransform
(
MaybeIntoLaterN
false
n
)).
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
laterN_intro
,
laterN_mono
,
laterN_and
,
laterN_sep
with
typeclass_instances
.
rewrite
/
MaybeIntoLaterN
=>
P
Q
->.
by
rewrite
laterN_affinely_persistently_2
.
Qed
.
Definition
modality_laterN
n
:
=
Modality
_
(
modality_laterN_mixin
n
).
End
sbi_modalities
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment