- 24 Jan, 2019 1 commit
-
-
Maxime Dénès authored
This is in preparation for coq/coq#9274.
-
- 26 Apr, 2018 1 commit
-
-
Ralf Jung authored
New IntoAcc typeclass to decouple creating and elliminating accessors; ElimInv supports both with and without Hclose
-
- 25 Apr, 2018 1 commit
-
-
Ralf Jung authored
-
- 30 Oct, 2017 1 commit
-
-
Robbert Krebbers authored
-
- 25 Oct, 2017 3 commits
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
Rename `UCMRA` → `Ucmra` Rename `CMRA` → `Cmra` Rename `OFE` → `Ofe` (`Ofe` was already used partially, but many occurences were missing) Rename `STS` → `Sts` Rename `DRA` → `Dra`
-
- 17 Sep, 2017 1 commit
-
-
Robbert Krebbers authored
For obsolete reasons, that no longer seem to apply, we used ∅ as the unit.
-
- 17 Aug, 2017 1 commit
-
-
Robbert Krebbers authored
-
- 08 Jun, 2017 1 commit
-
-
Robbert Krebbers authored
-
- 24 Mar, 2017 1 commit
-
-
Robbert Krebbers authored
Instead, I have introduced a type class `Monoid` that is used by the big operators: Class Monoid {M : ofeT} (o : M → M → M) := { monoid_unit : M; monoid_ne : NonExpansive2 o; monoid_assoc : Assoc (≡) o; monoid_comm : Comm (≡) o; monoid_left_id : LeftId (≡) monoid_unit o; monoid_right_id : RightId (≡) monoid_unit o; }. Note that the operation is an argument because we want to have multiple monoids over the same type (for example, on `uPred`s we have monoids for `∗`, `∧`, and `∨`). However, we do bundle the unit because: - If we would not, the unit would appear explicitly in an implicit argument of the big operators, which confuses rewrite. By bundling the unit in the `Monoid` class it is hidden, and hence rewrite won't even see it. - The unit is unique. We could in principle have big ops over setoids instead of OFEs. However, since we do not have a canonical structure for bundled setoids, I did not go that way.
-
- 21 Mar, 2017 2 commits
-
-
Robbert Krebbers authored
This way, iSplit will work when one side is persistent.
-
Robbert Krebbers authored
-
- 27 Jan, 2017 1 commit
-
-
Ralf Jung authored
-
- 09 Jan, 2017 1 commit
-
-
Ralf Jung authored
-
- 06 Jan, 2017 1 commit
-
-
Ralf Jung authored
-
- 05 Jan, 2017 1 commit
-
-
Ralf Jung authored
-
- 03 Jan, 2017 1 commit
-
-
Ralf Jung authored
This patch was created using find -name *.v | xargs -L 1 awk -i inplace '{from = 0} /^From/{ from = 1; ever_from = 1} { if (from == 0 && seen == 0 && ever_from == 1) { print "Set Default Proof Using \"Type*\"."; seen = 1 } }1 ' and some minor manual editing
-
- 09 Dec, 2016 1 commit
-
-
Ralf Jung authored
-
- 24 Nov, 2016 1 commit
-
-
Jacques-Henri Jourdan authored
The idea on magic wand is to use it for curried lemmas and use ⊢ for uncurried lemmas.
-
- 22 Nov, 2016 2 commits
-
-
We do this by introducing a type class UpClose with notation ↑. The reason for this change is as follows: since `nclose : namespace → coPset` is declared as a coercion, the notation `nclose N ⊆ E` was pretty printed as `N ⊆ E`. However, `N ⊆ E` could not be typechecked because type checking goes from left to right, and as such would look for an instance `SubsetEq namespace`, which causes the right hand side to be ill-typed.
-
Ralf Jung authored
-
- 17 Nov, 2016 1 commit
-
-
Robbert Krebbers authored
-
- 03 Nov, 2016 1 commit
-
-
Robbert Krebbers authored
The old choice for ★ was a arbitrary: the precedence of the ASCII asterisk * was fixed at a wrong level in Coq, so we had to pick another symbol. The ★ was a random choice from a unicode chart. The new symbol ∗ (as proposed by David Swasey) corresponds better to conventional practise and matches the symbol we use on paper.
-
- 28 Oct, 2016 2 commits
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
- 25 Oct, 2016 4 commits
-
-
Robbert Krebbers authored
There are now two proof mode tactics for dealing with modalities: - `iModIntro` : introduction of a modality - `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
And also rename the corresponding proof mode tactics.
-
- 12 Oct, 2016 2 commits
-
-
Robbert Krebbers authored
-
Ralf Jung authored
-
- 06 Oct, 2016 1 commit
-
-
Robbert Krebbers authored
-
- 05 Oct, 2016 1 commit
-
-
Robbert Krebbers authored
-
- 09 Sep, 2016 1 commit
-
-
Robbert Krebbers authored
Before this commit, given "HP" : P and "H" : P -★ Q with Q persistent, one could write: iSpecialize ("H" with "#HP") to eliminate the wand in "H" while keeping the resource "HP". The lemma: own_valid : own γ x ⊢ ✓ x was the prototypical example where this pattern (using the #) was used. However, the pattern was too limited. For example, given "H" : P₁ -★ P₂ -★ Q", one could not write iSpecialize ("H" with "#HP₁") because P₂ -★ Q is not persistent, even when Q is. So, instead, this commit introduces the following tactic: iSpecialize pm_trm as # which allows one to eliminate implications and wands while being able to use all hypotheses to prove the premises, as well as being able to use all hypotheses to prove the resulting goal. In the case of iDestruct, we now check whether all branches of the introduction pattern start with an `#` (moving the hypothesis to the persistent context) or `%` (moving the hypothesis to the pure Coq context). If this is the case, we allow one to use all hypotheses for proving the premises, as well as for proving the resulting goal.
-
- 09 Aug, 2016 1 commit
-
-
Ralf Jung authored
-
- 08 Aug, 2016 1 commit
-
-
Robbert Krebbers authored
This makes stuff more uniform and also removes the need for the [inGFs] type class. Instead, there is now a type class [subG Σ1 Σ2] which expresses that a list of functors [Σ1] is contained in [Σ2].
-
- 05 Aug, 2016 3 commits
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
Also make those for introduction and elimination more symmetric: !% pure introduction % pure elimination !# always introduction # always elimination !> later introduction > pat timeless later elimination !==> view shift introduction ==> pat view shift elimination
-
Robbert Krebbers authored
This commit features: - A simpler model. The recursive domain equation no longer involves a triple containing invariants, physical state and ghost state, but just ghost state. Invariants and physical state are encoded using (higher-order) ghost state. - (Primitive) view shifts are formalized in the logic and all properties about it are proven in the logic instead of the model. Instead, the core logic features only a notion of raw view shifts which internalizing performing frame preserving updates. - A better behaved notion of mask changing view shifts. In particular, we no longer have side-conditions on transitivity of view shifts, and we have a rule for introduction of mask changing view shifts |={E1,E2}=> P with E2 ⊆ E1 which allows to postpone performing a view shift. - The weakest precondition connective is formalized in the logic using Banach's fixpoint. All properties about the connective are proven in the logic instead of directly in the model. - Adequacy is proven in the logic and uses a primitive form of adequacy for uPred that only involves raw views shifts and laters. Some remarks: - I have removed binary view shifts. I did not see a way to describe all rules of the new mask changing view shifts using those. - There is no longer the need for the notion of "frame shifting assertions" and these are thus removed. The rules for Hoare triples are thus also stated in terms of primitive view shifts. TODO: - Maybe rename primitive view shift into something more sensible - Figure out a way to deal with closed proofs (see the commented out stuff in tests/heap_lang and tests/barrier_client).
-