Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Lennard Gäher
stdpp
Commits
3165a4c5
Commit
3165a4c5
authored
Mar 14, 2021
by
Robbert Krebbers
Browse files
Use new set notation for multisets in tests.
parent
5d8dd980
Changes
1
Hide whitespace changes
Inline
Side-by-side
tests/multiset_solver.v
View file @
3165a4c5
...
...
@@ -27,48 +27,45 @@ Section test.
2
<
multiplicity
x
X
→
X
⊆
Y
→
1
<
multiplicity
x
Y
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_multiplicity_2
x
X
:
2
<
multiplicity
x
X
→
{[
x
]}
⊎
{[
x
]}
⊎
{[
x
]}
⊆
X
.
2
<
multiplicity
x
X
→
{[
x
;
+
x
;
+
x
]}
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_multiplicity_3
x
X
:
multiplicity
x
X
<
3
→
{[
x
]}
⊎
{[
x
]}
⊎
{[
x
]}
⊈
X
.
multiplicity
x
X
<
3
→
{[
x
;
+
x
;
+
x
]}
⊈
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_1
x
X
:
x
∈
X
↔
{[
x
]}
⊎
∅
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_2
x
X
:
x
∈
X
↔
{[
x
]}
∪
∅
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_3
x
y
X
:
x
≠
y
→
x
∈
X
→
y
∈
X
→
{[
x
]}
⊎
{[
y
]}
⊆
X
.
Lemma
test_elem_of_3
x
y
X
:
x
≠
y
→
x
∈
X
→
y
∈
X
→
{[
x
;
+
y
]}
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_4
x
y
X
Y
:
x
≠
y
→
x
∈
X
→
y
∈
Y
→
{[
x
]}
⊎
{[
y
]}
⊆
X
∪
Y
.
Lemma
test_elem_of_4
x
y
X
Y
:
x
≠
y
→
x
∈
X
→
y
∈
Y
→
{[
x
;
+
y
]}
⊆
X
∪
Y
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_5
x
y
X
Y
:
x
≠
y
→
x
∈
X
→
y
∈
Y
→
{[
x
]}
⊆
(
X
∪
Y
)
∖
{[
y
]}.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_6
x
y
X
:
{[
x
]}
⊎
{[
y
]}
⊆
X
→
x
∈
X
∧
y
∈
X
.
Lemma
test_elem_of_6
x
y
X
:
{[
x
;
+
y
]}
⊆
X
→
x
∈
X
∧
y
∈
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_big_1
x1
x2
x3
x4
:
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
⊆
@{
gmultiset
A
}
{[
x1
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}.
{[
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
]}
⊆
@{
gmultiset
A
}
{[
x1
;
+
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
]}.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_big_2
x1
x2
x3
x4
X
:
2
≤
multiplicity
x4
X
→
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
⊆
@{
gmultiset
A
}
{[
x1
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
X
.
{[
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
]}
⊆
@{
gmultiset
A
}
{[
x1
;
+
x1
;
+
x2
;
+
x3
]}
⊎
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_big_3
x1
x2
x3
x4
X
:
4
≤
multiplicity
x4
X
→
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
{[
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
;
+
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
]}
⊆
@{
gmultiset
A
}
{[
x1
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x1
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
X
.
{[
x1
;
+
x1
;
+
x2
;
+
x3
;
+
x1
;
+
x1
;
+
x2
;
+
x3
]}
⊎
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_big_4
x1
x2
x3
x4
x5
x6
x7
x8
x9
:
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
⊎
{[
x5
]}
⊎
{[
x6
]}
⊎
{[
x7
]}
⊎
{[
x8
]}
⊎
{[
x8
]}
⊎
{[
x9
]}
{[
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
;
+
x5
;
+
x6
;
+
x7
;
+
x8
;
+
x8
;
+
x9
]}
⊆
@{
gmultiset
A
}
{[
x1
]}
⊎
{[
x1
]}
⊎
{[
x2
]}
⊎
{[
x3
]}
⊎
{[
x4
]}
⊎
{[
x4
]}
⊎
{[
x5
]}
⊎
{[
x5
]}
⊎
{[
x6
]}
⊎
{[
x7
]}
⊎
{[
x9
]}
⊎
{[
x8
]}
⊎
{[
x8
]}.
{[
x1
;
+
x1
;
+
x2
;
+
x3
;
+
x4
;
+
x4
;
+
x5
;
+
x5
;
+
x6
;
+
x7
;
+
x9
;
+
x8
;
+
x8
]}.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_firstorder_1
(
P
:
A
→
Prop
)
x
X
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment