fin_maps.v 123 KB
Newer Older
1
2
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
3
induction principles for finite maps and implements the tactic
4
[simplify_map_eq] to simplify goals involving finite maps. *)
5
From Coq Require Import Permutation.
6
From stdpp Require Export relations orders vector fin_sets.
Ralf Jung's avatar
Ralf Jung committed
7
8
9
10
11
From stdpp Require Import options.

(* FIXME: This file needs a 'Proof Using' hint, but they need to be set
locally (or things moved out of sections) as no default works well enough. *)
Unset Default Proof Using.
12

13
14
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
15
16
17
18
19
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
20

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
23
prove well founded recursion on finite maps. *)
24

25
26
27
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
28

29
Class FinMapToList K A M := map_to_list: M  list (K * A).
30
31
Global Hint Mode FinMapToList ! - - : typeclass_instances.
Global Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33
34
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
35
    EqDecision K} := {
36
37
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
38
39
40
41
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
42
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
43
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
44
45
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
46
  lookup_omap {A B} (f : A  option B) (m : M A) i :
Michael Sammler's avatar
Michael Sammler committed
47
    omap f m !! i = m !! i = f;
48
49
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!DiagNone f} (m1 : M A) (m2 : M B) i :
50
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
51
52
}.

53
54
55
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
56
57
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
58
Global Instance map_insert `{PartialAlter K A M} : Insert K A M :=
59
  λ i x, partial_alter (λ _, Some x) i.
60
Global Instance map_alter `{PartialAlter K A M} : Alter K A M :=
61
  λ f, partial_alter (fmap f).
62
Global Instance map_delete `{PartialAlter K A M} : Delete K M :=
63
  partial_alter (λ _, None).
64
Global Instance map_singleton `{PartialAlter K A M, Empty M} :
65
66
  SingletonM K A M := λ i x, <[i:=x]> .

67
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
68
  fold_right (λ p, <[p.1:=p.2]>) .
69

70
Global Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).
71

72
Definition map_to_set `{FinMapToList K A M,
73
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
74
75
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
76
    (f : B  K * A) (X : C) : M :=
77
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Global Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
80
  λ f, merge (union_with f).
81
Global Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
82
  λ f, merge (intersection_with f).
83
Global Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
84
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
85

86
87
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
88
Global Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
89
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
90

91
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  λ m,  i x, m !! i = Some x  P i x.
Ralf Jung's avatar
Ralf Jung committed
93

94
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
97
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
99
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
100
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
101
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
102
Global Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
103
104
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
105
Global Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
106
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
110
111

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
112
113
Global Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
Global Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
114
115
  intersection_with (λ x _, Some x).

116
117
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
118
Global Instance map_difference `{Merge M} {A} : Difference (M A) :=
119
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
120

121
122
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
123
124
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
125
  list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)).
126

127
128
(** Given a function [f : K1 → K2], the function [kmap f] turns a maps with
keys of type [K1] into a map with keys of type [K2]. The function [kmap f]
129
is only well-behaved if [f] is injective, as otherwise it could map multiple
130
entries into the same entry. All lemmas about [kmap f] thus have the premise
131
[Inj (=) (=) f]. *)
132
Definition kmap `{ A, Insert K2 A (M2 A),  A, Empty (M2 A),
133
134
135
     A, FinMapToList K1 A (M1 A)} {A} (f : K1  K2) (m : M1 A) : M2 A :=
  list_to_map (fmap (prod_map f id) (map_to_list m)).

136
137
138
139
140
141
142
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

143
144
145
146
147
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

148
Global Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
149
150
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

151
152
153
154
155
156
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

157
Global Instance map_lookup_total `{!Lookup K A (M A), !Inhabited A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  LookupTotal K A (M A) | 20 := λ i m, default inhabitant (m !! i).
159
Typeclasses Opaque map_lookup_total.
Dan Frumin's avatar
Dan Frumin committed
160

161
162
163
164
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
(** ** Setoids *)
Section setoid.
167
  Context `{Equiv A}.
168

169
170
171
172
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

173
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
174
175
  Proof.
    split.
176
177
    - by intros m i.
    - by intros m1 m2 ? i.
178
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  Qed.
180
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Proof. by intros m1 m2 Hm. Qed.
Dan Frumin's avatar
Dan Frumin committed
182
183
184
185
  Global Instance lookup_total_proper (i : K) `{!Inhabited A} :
    Proper (@{A}) inhabitant 
    Proper ((@{M A}) ==> ()) (lookup_total i).
  Proof.
186
    intros ? m1 m2 Hm. unfold lookup_total, map_lookup_total.
Dan Frumin's avatar
Dan Frumin committed
187
188
    apply from_option_proper; auto. by intros ??.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  Global Instance partial_alter_proper :
190
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
193
194
195
196
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
197
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
198
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
199
  Global Instance singletonM_proper k : Proper (() ==> (@{M A})) (singletonM k).
200
201
202
203
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
204
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
205
206
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
207
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
209
210
211
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
214
    (() ==> () ==> ())%signature f g 
215
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
216
217
218
219
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
220
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
224
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
226
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
227
228
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
229
230
231
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
232
  Qed.
233
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
234
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
235
236
237
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239
240
241
242
243
244
  Global Instance map_zip_with_proper `{Equiv B, Equiv C} (f : A  B  C) :
    Proper (() ==> () ==> ()) f 
    Proper (() ==> () ==> ()) (map_zip_with (M:=M) f).
  Proof.
    intros Hf m1 m1' Hm1 m2 m2' Hm2. apply merge_ext; try done.
    destruct 1; destruct 1; repeat f_equiv; constructor || done.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
245
246
247
End setoid.

(** ** General properties *)
248
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
249
Proof. split; [by intros ->|]. apply map_eq. Qed.
250
251
252
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
254
255
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
256
Global Instance map_included_preorder {A} (R : relation A) :
257
  PreOrder R  PreOrder (map_included R : relation (M A)).
258
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
  split; [intros m i; by destruct (m !! i); simpl|].
260
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
261
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
262
    done || etrans; eauto.
263
Qed.
264
Global Instance map_subseteq_po {A} : PartialOrder (@{M A}).
265
Proof.
266
267
268
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
269
Qed.
Dan Frumin's avatar
Dan Frumin committed
270
271
272
273
274
275
276
277
278
Lemma lookup_total_alt `{!Inhabited A} (m : M A) i :
  m !!! i = default inhabitant (m !! i).
Proof. reflexivity. Qed.
Lemma lookup_total_correct `{!Inhabited A} (m : M A) i x :
  m !! i = Some x  m !!! i = x.
Proof. rewrite lookup_total_alt. by intros ->. Qed.
Lemma lookup_lookup_total `{!Inhabited A} (m : M A) i :
  is_Some (m !! i)  m !! i = Some (m !!! i).
Proof. intros [x Hx]. by rewrite (lookup_total_correct m i x). Qed.
279
280
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
281
Proof. rewrite !map_subseteq_spec. auto. Qed.
282
283
284
285
286
287
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
288
289
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
290
291
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
292
293
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
294
295
296
297
298
299
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
300
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
301
Proof. by rewrite lookup_empty. Qed.
302
303
Lemma loopup_total_empty `{!Inhabited A} i : ( : M A) !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_empty. Qed.
304
Lemma map_subset_empty {A} (m : M A) : m  .
305
306
307
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
Ralf Jung's avatar
Ralf Jung committed
308
309
Lemma map_empty_subseteq {A} (m : M A) :   m.
Proof. apply map_subseteq_spec. intros k v []%lookup_empty_Some. Qed.
310

311
312
313
314
315
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
316
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
317
318
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
Robbert Krebbers's avatar
Robbert Krebbers committed
319
    destruct Heq; apply (anti_symm ()), map_subseteq_spec; [done|intros i x Hi].
320
321
322
323
324
325
326
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

327
(** ** Properties of the [partial_alter] operation *)
328
329
330
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
331
332
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
333
334
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
335
336
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
337
338
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
339
Qed.
340
Lemma partial_alter_commute {A} f g (m : M A) i j :
341
  i  j  partial_alter f i (partial_alter g j m) =
342
343
    partial_alter g j (partial_alter f i m).
Proof.
344
345
346
347
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
348
  - by rewrite lookup_partial_alter,
349
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
350
  - by rewrite !lookup_partial_alter_ne by congruence.
351
352
353
354
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
355
356
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
357
Qed.
358
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
359
Proof. by apply partial_alter_self_alt. Qed.
360
Lemma partial_alter_subseteq {A} f (m : M A) i :
361
  m !! i = None  m  partial_alter f i m.
362
363
364
365
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
366
Lemma partial_alter_subset {A} f (m : M A) i :
367
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
368
Proof.
369
370
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
371
372
373
Qed.

(** ** Properties of the [alter] operation *)
374
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
375
Proof. unfold alter. apply lookup_partial_alter. Qed.
376
377
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
378
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
379
380
381
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
382
383
384
385
386
387
388
389
390
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
391
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
392
393
394
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
395
  destruct (decide (i = j)) as [->|?].
396
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
397
  - rewrite lookup_alter_ne by done. naive_solver.
398
Qed.
399
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
400
401
  alter f i m !! j = None  m !! j = None.
Proof.
402
403
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
404
Qed.
405
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
406
407
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
408
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
410
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
412
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  by rewrite lookup_alter_ne by done.
414
Qed.
415
416
417
418
419
420
421
422
423
424
425
426
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
427
428
429
430

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
431
432
433
Lemma lookup_total_delete `{!Inhabited A} (m : M A) i :
  delete i m !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_delete. Qed.
434
435
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
436
437
438
Lemma lookup_total_delete_ne `{!Inhabited A} (m : M A) i j :
  i  j  delete i m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_delete_ne. Qed.
439
440
441
442
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
443
  - destruct (decide (i = j)) as [->|?];
444
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
445
  - intros [??]. by rewrite lookup_delete_ne.
446
Qed.
447
448
449
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
450
451
452
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
453
454
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
455
456
457
458
459
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
460
461
462
Proof.
  destruct (decide (i = j)) as [->|]; [done|]. by apply partial_alter_commute.
Qed.
463
464
465
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
466
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
467
Proof.
468
469
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
470
Qed.
471
472
473
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
474
475
476
477
478
479
480
481
482
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
483
484
485
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
486
487
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
488
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
489
490
491
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
492
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
493
Proof.
494
495
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
496
Qed.
497
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
498
Proof.
499
500
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
501
502
503
504
505
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
506
507
Lemma lookup_total_insert `{!Inhabited A} (m : M A) i x : <[i:=x]>m !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_insert. Qed.
508
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
509
Proof. rewrite lookup_insert. congruence. Qed.
510
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
511
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
512
513
514
Lemma lookup_total_insert_ne `{!Inhabited A} (m : M A) i j x :
  i  j  <[i:=x]>m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_insert_ne. Qed.
515
516
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
517
518
519
520
521
522
523
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
524
  - destruct (decide (i = j)) as [->|?];
525
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
526
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
527
Qed.
528
529
530
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
531
532
533
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
534
535
536
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
537
538
539
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
540
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
542
543
544
545
546
547
548
549
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
550
551
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
552
Qed.
553
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
554
555
556
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
557
  intros Hi%(f_equal (.!! i)). by rewrite lookup_insert, lookup_empty in Hi.
558
559
Qed.

560
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
561
Proof. apply partial_alter_subseteq. Qed.
562
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
563
Proof. intro. apply partial_alter_subset; eauto. Qed.
564
565
566
567
568
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
569
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
570
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
571
Proof.
572
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
573
Qed.
Ralf Jung's avatar
Ralf Jung committed
574
575
576
Lemma insert_subseteq_l {A} (m1 m2 : M A) i x :
  m2 !! i = Some x  m1  m2  <[i:=x]> m1  m2.
Proof.
Ralf Jung's avatar
Ralf Jung committed
577
  intros Hi Hincl. etrans; [apply insert_mono, Hincl|]. by rewrite insert_id.
Ralf Jung's avatar
Ralf Jung committed
578
Qed.
579

580
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
581
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
582
Proof.
583
584
585
586
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
587
588
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
589
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
590
Proof.
591
592
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
593
594
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
595
596
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
597
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
598
Proof.
599
600
601
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
602
603
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
604
  m1 !! i = None  <[i:=x]> m1  m2 
605
606
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
607
  intros Hi Hm1m2. exists (delete i m2). split_and?.
608
  - rewrite insert_delete, insert_id; [done|].
609
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
610
611
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
612
613
614
615
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
616
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
617
Proof.
618
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
619
Qed.
620
621
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
622
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
623
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
624
Proof. by rewrite lookup_singleton_Some. Qed.
625
626
627
Lemma lookup_total_singleton `{!Inhabited A} i (x : A) :
  ({[i := x]} : M A) !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_singleton. Qed.
628
629
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
630
Proof. by rewrite lookup_singleton_None. Qed.
631
632
633
Lemma lookup_total_singleton_ne `{!Inhabited A} i j (x : A) :
  i  j  ({[i := x]} : M A) !!! j = inhabitant.
Proof. intros. by rewrite lookup_total_alt, lookup_singleton_ne. Qed.
634
635
636
637
638
639
640
641
642

Global Instance map_singleton_inj {A} : Inj2 (=) (=) (=) (singletonM (M:=M A)).
Proof.
  intros i1 x1 i2 x2 Heq%(f_equal (lookup i1)).
  rewrite lookup_singleton in Heq. destruct (decide (i1 = i2)) as [->|].
  - rewrite lookup_singleton in Heq. naive_solver.
  - rewrite lookup_singleton_ne in Heq by done. naive_solver.
Qed.

643
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
644
Proof.
645
  intros Hix. apply (f_equal (.!! i)) in Hix.
646
647
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
648
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
649
Proof.
650
  unfold singletonM, map_singleton, insert, map_insert.
651
652
  by rewrite <-partial_alter_compose.
Qed.
653
654
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
655
Proof.